\ .
N “\Linux for ./ A

Researchers

.-Chapter 9. Shell Scripts

When you find yourself typing the same set of commands
over and over, it's time to write a script to automate the
process. As we've seen, Unix has a modular design. Each
command typically does one simple, well-defined task, and
commands can be connected together to do complex jobs.
The shell just provides the plumbing to connect these
commands together.

Today, we'll start off by looking at how we can put
those commands and the necessary plumbing
together into a script file that we can run.

We'll look at a few more commands that are
particularly useful in scripts.

Then we'll look at the variables and flow control
mechanisms that make a script more useful than just
a list of commands.

 What's a shell script?
* A simple shell script is a file that contains some
commands that you would normally type at the
command line.

* Why is it useful to learn about shell scripts?

* Shell scripts are widely used, so sooner or later
you'll encounter a script you'll need to
understand.

* You'll inevitably want to easily repeat a series of
commands in a consistent way (Avoiding
questions like "What switches did | use the last
time | compiled that program?" and "Do | really
have to type almost the same command a
thousand times to process all of these files?")

When is a Shell Script Appropriate?:

Generally, a shell script is appropriate when you need to do something repeatedly (either
many times right now, or at various times in the future), when you don't need to work
with complex data structures like arrays or do much math, and when speed isn't

particularly important.

Command | Shell | Interpreted | Compiled
Line Script | Language | Language
Bourne
tcsh,bash Shell Perl, Python| C, Fortra
One-shots |Repeated| Complex Speed
Data Struc-
tures or
Math

The Bourne shell is good a doing the flow-control and
plumbing necessary to write a script that automates
collections of shell commands. It's not very good at
math, though, or at arrays (even one-dimensional
ones). My rule of thumb is that, as soon as you start
thinking about doing arrays in your shell script, it's
time to start learning Perl.

Life Decisions....

HOW LONG AN YoU WORK ON MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(RCROSS FIVE YERRS)

HOW OFTEN YOU DO THE TRSK

M - -1
%few by DALY WEEKLY MONFHLY YEARY
1 5econ0 | [T oA | 20085 |0 3% o TES e | s

sm@m (2vours | 20085 | Zh o | oDres | seros

30 SEONDS | 7] ey || 3] DAYS | 12 HouRs | 2 HouRS

o 4 e | GUE T8 onvs [T oar | 4 voors | Lroe | O
O

%%VE 5 MTES | 9 vowms| TS (8] oavs| 21 woues | S voues | 25
ofF 30 MNUES 6 MONTHG [T] oav | 2 Howes
1 HOUR 10 MoNTHS DAYS| 5 HOURS

6 HOURS S orers|[1) 0AY

Rk B ueps |[5]0R

https://xkcd.com/1205/

You be the judge: Is it worth your time?

Choice of Shell-Scripting Lanquage:

| highly recommend you write your scripts in the Bourne shell
(e.g. bash):

* It's universally available on Unix-like operating systems.
* It's the default login shell for user accounts under Linux.
« VVery few shell scripts are written in any other language.
* You'll need to understand it anyway, because it's so ubiquitous.

* You'll be able to benefit from many examples and much
expertise among your peers.

On the other hand, | recommend you avoid non-standard features of
bash, that aren't shared by other Bourne shell implementations. Even if
you expect your script to always run under Linux, it doesn't hurt to
make it portable from the outset.

Because of the above, assume that everything | say
today is specific to bash, unless | say otherwise.

Regarding non-standard features, there's a set of
standards called “POSIX” that specifies how a Unix-
like system should behave. Among other things,
these standards list certain minimal features that the
operating system's Bourne shell scripting language
should support. For the examples I'll use today, I've
used only features that should be available in any
POSIX-compliant implementation of the Bourne
shell.

An Example Script:

mkthumbs —

#!/bin/sh
DIR=S1

Confirm this is what you want to do:
echo "Do you really want to make thumbnails in $DIR\? (y/n):"
read ANS
if ["S$SANS" = "y"]
then

Change into target directory:
cd $DIR

Get list of images:
FILES="1ls *.jpg | grep -v '"“t_°

Make thumbnails:
for F in SFILES

do
echo "Processing $F..."
convert -define jpeg:size=200x200 SF \
-thumbnail '100x100>' t_SF
done

fi

This script makes thumbnails for each jpeg image in a
given directory. In the following slides we'll look at
what each part of such a script does.

Creating and Running a Script:

You can create a shell script with any text editor. Just take the
commands you'd normally type at the command line and put them
into a file. Let's call the file “myprogram”. There are then two ways to
run your program:

1. Explicitly tell the shell to run the commands in the file:

sh myprogram

Or, 2. make the program executable, and then just type its
name (assuming that the current directory is in your search
path):

chmod +x myprogram
myprogram

If you're using tcsh as your login shell, you might need
to type "rehash"” before you'll be able to run your
script by just typing its name. That's because tcsh
keeps a cache of the names of all of the executable
files in your search path. If a new executable (like
your script) is added while you're logged in, the
rehash command will tell tcsh to refresh that cache,
so that it finds your newly-executable script.

Using the “shebanqg”:

* You should always begin your shell scripts with the characters
“#!/bin/sh” by themselves on the first line.

* When the shell runs an executable file, it looks for the two
characters “#!” as the first two bytes of the file. This set of characters
is collectively known as a “shebang”.

* When the shell finds them, it knows that the file is a shell script, not
a binary executable. The characters following the “#!” tell the shell
which scripting language should be used to interpret the script.

* Lets you write scripts in any language you want, regardless of what
your login shell is.

So, when a file begins with “#!/bin/sh” and you
invoke it by typing the file's name, the shell
actually does something like “/bin/sh
myprogram” invisibly, behind the scenes.

On most Linux systems, /bin/sh is just a
symbolic link to /bin/bash. All Unix-like
operating systems should have something
called /bin/sh that understands Bourne shell
syntax.

Debugging Scripts:

If you want to see what commands the script is using, as
they're executed, you can always invoke it like this:

sh -x myprogram

This is often useful for debugging.

Comments, and Very Long Commands:

* Any line beginning with "#" is considered a comment, and ignored
by the computer when running the script:

Create the user account:
useradd $userid

Set the user's password:
passwd $userid

* Long commands can be continued on multiple lines. Aline ending in
a backslash is continued onto the next line. Note that there can be no
characters (not even a space) after the backslash:

1s -1 /tmp | \

grep bkwlia | \

awk '{print $5/1000,$NF}' | \

sed -e 's/\..*$//" | \

/bin/mail -s Information bryan@virginia.edu

Part 2: Shell Script Plumbing

2 GLYCOL

CHLED WTeR el

In addition to letting you run commands, the shell
provides some plumbing that allows you to connect
commands together. The output of one command
can be sent to a file, or even to the input of another
command. We talked about this earlier, but let's do a
quick review.

Standard I/O Channels:

Each running program has three input/output "channels" associated
with it:

0 "Standard Input" (stdin)
1 "Standard Output" (stdout)
2 "Standard Error" (stderr)

stdin myprOg ram stdout

stderr

The program reads input from stdin, writes normal output to stdout,
and writes any errors to stderr. When you run a command from the
command line, all three of these channels just point to your screen

and keyboard.

Redirecting stdout and stderr:

You can redirect stdout to a file (with stderr still going to the screen):

myprogram > myprog.out

If you already have a file, and you want a command to append
onto the end of it, you can use ">>":

myprogram >> myprog.out

You can send stdout and stderr into separate files:
myprogram 1> myprog.out 2> myprog.err

Or you can send them both into the same file:
myprogram > myprog.out 2>&1

Redirecting stdin:

You can also redirect stdin. Normally, commands read input from your
keyboard, but you can tell them to read it from someplace else. Look
at the following example:

myprogram < myprog.in 1> myprog.out 2> myprog.err

In the command above, we tell the program to read input from
inputfile.dat, then write normal output into outputfile.dat and errors
into errorfile.dat. The input might be answers to any questions the
program would ask us.

Connecting Commands Together:

What if we connect the output of one program to the input of
another?

That's easy to do, and it's one of the most powerful features of
shells in Unix-like operating systems.

Consider the following command:

myprogram | grep bryan

The "|" symbol is called a "pipe", and in the command above it
connects the stdout of myprogram to the the stdin of grep.

The "grep" command looks for strings that match a given
pattern. Run this way, it reads data from stdin, searches
for the pattern, and prints matching lines out on stdout
(where they would appear on your screen unless you
redirected them into a file).

You'll use grep a lot in shell scripts. We'll describe how it
works shortly.

Part 3: Using Variables

A variable is a “box” in which we can temporarily store
some information. Just like most programming
languages, the shell provides mechanisms for using
variables.

Defining Variables:

Variables in shell scripts are used in ways that you're
probably already familiar with:

DELAY=24

NAME=Bryan

FULLNAME="Bryan Wright"
ADDRESS="Right Here"
NAMEANDADDRESS="SNAME at S$ADDRESS"

* Note that there can be no spaces on either side of the
equals sign.

* Values containing spaces need to be quoted.

* The last example shows that you can get the value of a
variable by putting a dollar sign in front of its name.

Double-Quotes and Single-Quotes:

A string enclosed in single-quotes is interpreted literally, but a string
enclosed in double-quotes is subject to variable expansion and other
processing:

~/demo> echo 'My home is $HOME'
My home is $HOME

~demo> echo “My home is $HOME”
My home is /home/elvis

or...

~/demo> echo 'Here I am: “pwd '
Here I am: "pwd’

~demo> echo “Here I am: “pwd ”
Here I am: /home/elvis/demo

Special Characters:

The characters *, ?, °, $, | and \ may cause grief if used between
double-quotes. You can make these literal by prepending a \, as “*”:

echo "this is a dollar sign: \$"
echo "this is a question mark: \?2"

Also note that this won't work...

echo 'I'm here! ' northis:

...but this will:

echo

'I\'m here!'

echo

IIIIIIIIIm herel

The “read” Command:

You can accept input from the user and store it in a variable using the
‘read” command:

#/bin/sh

echo “Tell me your name:”

read ANSWER
echo “You said your name was SANSWER.”

Using Backticks:

Backticks are another way of putting values into variables.
Here's an example:

CFILES= 1ls *.c

In the command above, the shell executes what's between the
backticks,then sticks the output of the command into the variable
called CFILES. In this example, the variable would contain a list of
files with names like *.c in the current directory.

Arithmetic Evaluation:

Doing simple arithmetic in bash isn't so simple. For example:

~/demo> VARIABLE=0
~/demo> VARIABLE=$VARIABLE+1
~/demo> echo $VARIABLE

O+lw

However, expressions enclosed between “((“ and “))” will be
evaluated arithmetically:

~/demo> VARIABLE=0

~/demo> ((VARIABLE=$VARIABLE+1))
~/demo> echo $VARIABLE

1

Part 4: Positional Variables =

When we run a script there are some variables that are
automatically defined for us. Among them are the
"positional variables”, which can help you make your
script more flexible.

Positional Variables:

What if we want to give our program arguments on the command line?
\~/demo> myprogram filel.txt file2.txt file3.txt

The command line arguments are available within the program through
a set of pre-defined “positional variables”. These are special variables
with the names $0, $1, $2, $3, etc.. In the example above, these
variables would have the following values:

$0 = myprogram
$1 = filel.txt
$2 = file2.txt
$3 = file3.txt

The variables $* and $@ each contain the whole list of arguments, starting with $1, but they
behave differently when enclosed in double-quotes:

var Value

$* filel.txt file2.txt file3.txt
“grr M“filel.txt file2.txt file3.txt”

$@ filel.txt file2.txt file3.txt
“$@” “filel.txt” “file2.txt” “file3.txt”

See “man bash” for more special variables in bash.

Part 5: Useful Components for Building Scripts

In this section we'll look at a collection of commands
that are particularly useful in shell scripts. As you'll
see, these commands mostly follow the Unix
philosophy that says each command should do one
simple thing well, and that complicated things can be
done by plugging multiple simple commands
together.

The “qrep” Command:

~/demo> ps aux | grep pdf$

This line is very important!

~/demo> ps aux | grep acroread <4
bkwla 20422 2.7 1.9 111516 38696 pts/19 S 10:49 0:00 /usr/bin/acroread cluster.pdf
bkwla 20512 0.0 0.0 5032

~/demo> ps aux | grep acroread |
bkwla 20422 2.7 1.9 111516

~/demo> ps aux | grep Abkwla
1

bkwila 20422 2.7 .9 111516 386

~/demo> grep important readme.txt

Pick lines with the string “acroread”|

664 pts/19 S+ 10:50 0:00 grep acroread
38696 9°S \10:49 0:00 /usr/bin/acroread cluster.pdf

-tcsh
9 111816 38696 pts/19 S 10:49 0:00 /usr/bin/acroread cluster.pdf

bkwila 30922 0.0 0. 7472 2720 pts/19 Ss FebQ2 0:00

bkwila 20422 2.7 1.

bkwila 20748 0.0 0.0 54 996 pts/19 R+ 10:5470:00 ps auxf
bkwila 20512 0.0 0.0 5500 664 pts/19 S+ 10:54 G500 grep ~bkwla

pts/19 S 10:49 0:00 \/usr/bin/acroread cluster.pdf

Pick lines ending in “pdf”

Pick lines beginning with “bkw1a”

Ignore lines with “grep”
(V" = “veto”)

The “grep” command can be used to select particular lines from an
input stream or a file. In the first examples above, the output of “ps”
is piped into grep. In the last example, grep searches within a file.
With grep, search terms are specified as “regular expressions”.
Regular expressions allow you to combine text and wild-card
specifiers in complex ways to pick out the lines you want.

Regular expressions (sometimes referred to as

“regex”) were invented by Ken Tompson, the same

guy who invented

The name “grep” comes from the syntax of an ancient
editor called “ed”. In ed, when you wanted so search
for a string and print out lines that contained it, you'd
use the command “g/re/p”, where “re” was some

Unix.

regular expression you wanted to search for.

One oddity you should be aware of: If you want to
search for something beginning with a dash, you'll
need to do something like “grep -- -string’.
The “--" tells grep that we're done giving it switches,
and everything else following is a literal search

string.

Some Reqgular Expression Syntax:

Symbol Meaning -E?

. Match any single character.
* Match zero or more of the preceding item.
+ Match one or more of the preceding item. y
? Match zero or one of the preceding item. y

{n,m} Match at least n, but not more than m, of the y

preceding item.

A Match the beginning of the string.
$ Match the end of the string.

[abc123] Match any of the enclosed list of characters.
[*abc123] Match any character not in this list.
[a-zA-Z0-9] Match any of the enclosed ranges of charac-

ters.
this|that Match “this” or “that”. y
\., *, etc. Match a literal “.”, “*”, etc.

Note that some of the things above won't work unless you give grep the “-E” switch,
to enable “extended” regular expressions. These are noted in the last column,
above. Also note that any expression that uses the characters []{} ? * needs to be
enclosed in single-quotes, to prevent the shell from interpreting these.

Note that regular expressions are different from the
pattern matching that we've used before, with
commands like “Is *.txt". That's called “glob” pattern
matching, or “globbing”, because it uses a short
expression to refer to a whole glob of files.

Regular expression pattern matching is a different
thing altogether. For example, you can see in the
slide above that * has a completely different meaning
In a regular expression.

Some grep Examples:

grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep
grep

elvis
Nelvis$

Match Bob, BOB, BoB, or BOb

'[eE]lvis’
'B[00][bB] —

Match blank lines
'A$'¢///////////////

'[0-9][0-9]"
'"[a-zA-Z]'
'[ra-zA-Z0-9]"

Match phone numbers

-E "[0-9]{3}-[0-9]{4}"

'ALS!
I/\\II\

"A\.[a-z][a-z]'

Match lines with just one character

Exit Status, “grep -q” , “&&” and “||”:

Whenever a command finishes, it returns an “exit status” to the shell,
telling the shell whether the command failed or completed
successfully. You can use the “&&” or “||” operators to tell the shell to
do something if the command succeeds or fails, respectively.

~/demo> w
11:03:09 up 45 days, 40 min, 3 users, load average: 0.05, 0.10, 0.03
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
elvis pts/12 11000 29Jan09 1ildays 3.02s 0.10s -bin/tcsh
elvis pts/17 11001 09:46 1:16m 1.96s 0.09s -bin/tcsh

~/demo> w | grep -q elvis && echo Found Elvis
Found Elvis

~/demo> w | grep -q bryan || echo No bryans
No bryans
~/demo> w | grep -q elvis && echo Found Elvis || echo No Elvises

Found Elvis

The “-q” switch tells grep not to write any output, but only return an
exit status to the shell. Grep tells the shell it was successful if it finds
the regular expression it was looking for. Otherwise, grep tells the
shell it failed.

The “sed” Command:

The “sed” command is a “stream editor”. It performs editing operations on its input stream,
one line at a time, and sends the modified data to its output stream. The example below
shows the most common way that sed is used. Sed works with the same set of basic regular
expressions as grep. To use the “extended” set of regular expressions with sed, give it the
“r’ switch.

~/demo> cat file.txt | sed -e 's/HERE/Charlottesville/g' > newfile.txt

~/demo> echo 555-1212 | sed -e 's/-//'

5551212
sed -e 's/HERE/Charlottesville/g'
o
Execute the following for this regexp... this replacement
sed command:
“globally”
Substitute... (all instances in each line)

“ "

If you leave off the “g” at the end, sed would only replace the first occurrence of “HERE” in
each line. For information about the other things sed can do, see “man sed”.

The “awk” Command:

Awk is actually a complete text processing language, but it's most often used for one simple
task: to extract columns from an input stream. You might think of this function as orthogonal

to grep:

~/demo> 1s -1

total 104

-rW-r----- 1 bkwla bkwla [20601 Jan 18 10:51 cluster.pdf ('9,
-rW-r----- 1 bkwila demo 983 |Jan 18 10:53 cpuinfo.dat D
drwxr-x--- 3 bkwila bkwla | 4096 |Jan 18 11:35 phasel ©
drwxr-x--- 2 bkwla bkwila | 4096 |Jan 19 11:03 phase2 | o
-rW-r----- 1 bkwla demo 72 |Jan 18 10:52 readme.txt -y
-rW-r----- 1 bkwla bkwla | 9552 |Jan 18 10:52 ReadMe.txt Q
drwxrwsr -x 2 bkwla demo 4096 |Jan 27 13:18 shared %
Column: 1 2 3 4 5 6 7 8 9 N

awk {print $5}'

~/demo> 1ls -1 | awk '{print $5}'
20601

983

4096

4096

72

9552

4096

Awk was invented by Alfred Aho, Peter Weinberger
and Brian Kernighan (hence "AWK") at AT&T Bell
Labs in the 70s.

For chopping data into columns, you can also use the
“cut” command, but it's less versatile.

Awk Examples:
awk '{print $1, $5}'

Print columns 1 and 5

Do some arithmetic

awk ' {prlnt $3/2, 5+$6} '« | before printing

Print the last column

awk '{print $NF} la—— | (NF="“Number of Fields)

aWk 1 {p r in t $ (N F _ 1) } 1 < Print the next-to-last column

awk '{print “The file size is”, $5}'

Add some text to each line of output

awk -F: '{print $1}'

Use “” as the field separator

Awk numbers the columns beginning with 1 (not zero). By default, awk chops each line
into columns by looking for white-space (spaces or tabs) between characters. You can tell
awk to use a different “field separator” with the “-F” switch.

The “sort” Command:

By default, “sort” sorts the lines from its input stream in dictionary order, and writes out
the sorted data. You can use the “-n” switch to sort the lines in numerical order, instead.

~/demo> cat /etc/passwd
adm
apache
bin

bkwla
cyrus
daemon
dbus
distcache
elvis
...etc.

| awk -F:

"{print $1}' | sort

“sort” versus “sort -n”:

~/demo> 1s -1l|awk '{print $5,$NF}'| sort
11 cluster.pdf

20601 cluster.pdf

29 data-for-everybody.1.dat
phasel

phase2

shared

41 ForYourEyesOnly.dat

72 readme. txt

ReadMe. txt

983 cpuinfo.dat

~/demo> 1s -1l|awk '{print $5,$NF}'| sort -

11 cluster.pdf

29 data-for-everybody.1.dat
41 ForYourEyesOnly.dat

72 readme. txt

983 cpuinfo.dat

phasel

phase2

shared

9552 ReadMe.txt

20601 cluster.pdf

In the first example, we're using awk to pick out the
username field from /etc/passwd. In the second and
third examples, we're using awk to pick out the file
size field from the output of Is.

The “uniq” Command:

~/demo> 1s -1 /tmp | awk '{print $3}' | sort The Un|q Com_rnand_
abkss eliminates duplicate lines
a S . .
bjeh from its input. It can also
olen be used to count the
cbsnw number of duplicates, by
. ete. using the “-c” switch.
~/demo> 1ls -1 /tmp | awk '{print $3}' | sort | uniq . . i
g;?'gf;s Combined with “sort -n”, as
chnw below, uniq can help you
Srr produce a ranked list of
onex how frequently particular
.. .etc. terms appear in the input.
~/demo> 1ls -1 /tmp | awk '{print $33}' | \ ~/demo> 1s -1 /tmp | awk '{print $3}' | \
sort | uniq -c sort | uniq -c | sort -n
2 abk5s 1 z1how
3 bj6h 1 ch8nw
1 ch8nw 1 jhh7t
5 cd6j
18 cl2jd 8 ema9u
3 cwb5xj 8 mab3ed
2 cx4d 9 rjh2j
..etc. 15 hgdc
15 root
18 cl2jd

The “wc¢” command:

The “wc” command (“word count”) can count the number of
characters, words or lines in its input. By default, wc shows all three
counts.

~/demo> cat readme.txt | wc

3 12 72
Lines Words Characters
Use the “I”, “-w” or “-c” switches to report only line count, word count

or character count, respectively.

~/demo> cat /etc/passwd | wc -1
73,

Number of accounts

The "tail" and "head" commands:

What if you just want to get the last line of a file? For that, there's
the "tail" command:

tail -1 file.dat

This would print out the last line of the file. To get the last two lines,
type "tail -2", and so forth. With no number, the last ten lines are
printed.

There's a similar "head" command to get the first n lines of
a file.

These can also be used in pipelines:

ls -1 /tmp | awk '{print $3}' | sort -n | tail -1

The “find” Command:

Find is a tool for finding files. It can find files based on name, date, size, ownership,

permissions or depth within the directory hierarchy.

find .

-type f -print

J \ J

Begin in this directory,/

N

v

and descend down

some criteria...

Select files that match

...and do something.

Some Available Criteria:

Some Available Actions: -name Match a file name
-print Print the fil_e'§ name (d.efault action). -type Match regular files (f),
-Is Show the file's properties. directories (d), symbolic
-exec Execute a given command, inserting the file's links (1), etc.
name. -mtime Time since file was last
E les: modified, in days. Use “+”
xa.1mp es: for “more than” and “-” for
find . -type f “less than”.
find . -type f -1s -user Specify user who owns file.
. _ . _ -perm Specify permissions of file.
f:!'nd ' mtime -1 . -size Specify file size. “+” and “-”
find . -type f -exec gzip {} \; function as for mtime.

The command “find .” will just descend from the current directory and print the names of
all the files and directories it finds.

The “-name” criterion accepts glob-style wild-cards. For
example, you could type:

find . -name "*.dat’

Note that you'll need to enclose the expression in single-quotes,
to prevent the shell from trying to expand “*.dat” before calling
“find”.

Finally, note that bash (in some implementations) tries to be
“helpful”. When an unquoted wildcard pattern can't be
matched, it passes the wildcard pattern, just as it's typed, to
the program being run, just as though you'd enclosed it in
single quotes. The problem with this approach is that the
behavior will be different depending on whether or not a file in
the current directory happens to match the pattern. |
recommend you avoid relying on this feature, and instead
always use quotes explicitly to clarify your intent.

The “test” or “[“ Command:

The “test” command is a general-purpose tool to check to see if a given
condition is true, and return an appropriate exit status to the shell. This
command is so commonly used that it has an alternate one-character
name, “[“. The command ignores a trailing “]” on its command line, so
the most common way to use test is something like this:

[condition to test for, | && echo True

These spaces are mandatory

Because the “test” command is so frequently used in system shell
scripts, you should never name an executable “test”. This is very
likely to cause odd behavior.

Using “test”:

Strings:

STRING1 = STRING2
I

the strings are equal

STRING1 != STRING2 the strings are not equa
Integers:
INTEGER1 -eq INTEGER2 INTEGERT1 is equal to INTEGER2
INTEGER1 -ge INTEGER2 INTEGERT1 is greater than or equal to INTEGER2
INTEGER1 -gt INTEGER2 INTEGERT1 is greater than INTEGER2
INTEGER1 -le INTEGER2 INTEGERT1 is less than or equal to INTEGER2
INTEGER1 -1t INTEGER2 INTEGERT1 is less than INTEGER?2
INTEGER1 -ne INTEGER2 INTEGERT1 is not equal to INTEGER2
Files:]
-e FILE FILE exists
-f FILE FILE exists and is a regular file
-d FILE FILE exists and is a directory
-L FILE FILE exists and is a symbolic 1link
-s FILE FILE exists and has a size greater than zero
-x FILE FILE exists and is executable
Booleans:

EXPRESSION1 -a EXPRESSION2

EXPRESSION1 -o EXPRESSION2

! EXPRESSION

both EXPRESSION1 and EXPRESSION2 are
true

either EXPRESSION1 or EXPRESSION2 is
true

EXPRESSION is false

Examples of the “test” Command:

~/demo> [-f /etc/motd] && cat /etc/motd

~/demo> [-x /local/bin/update] && /local/bin/update
~/demo> [-d /tmp/mytemp] || mkdir /tmp/mytemp

~/demo> [“$ANSWER” = “yes”] && echo Okay. || echo Nope.
~/demo> [“$ANSWER” \!= “no”] && echo Didn't SAY no...
~/demo> [$SIZE -gt 10000] && echo Found a big file.

~/demo> [$SIZE -le 1000 -o -f /etc/preserve] && echo OK.

Note that some shells will require that you put a backslash in
front of any “I” characters, to prevent the shell from interpreting
them before they're passed to “test”.

Part 6 Flow Control

Finally, the shell provides us with tools for controlling
the flow of our script. We can create loops to repeat
a set of commands, with variations, and we can
create conditional sections that will only be executed
when certain conditions are met.

Making Loops with “for”:

Here's an example of a “for” loop:
#1/bin/sh

for FILE in “$@"
do
echo “Processing file $FILE...”

done

~/demo> myprogram filel.txt file2.txt file3.txt
Processing file filel.txt...
Processing file file2.txt...
Processing file file3.txt...

This loops through the list of values given after “in”, setting “FILE”
successively to each value and executing all commands between “do”
and “done” each time.

Examples of “for”’ Loops:

Convert postscript files to PDF:
for FILE in *.ps
do
echo “Processing $FILE...”
ps2pdf $FILE
echo “Done.”
done

Renice all of my processes:

for PID in "ps aux | grep bkwla | awk '{print $1}'"
do
renice 15 $PID

done

Find all text files and convert to Unix line ends:
LIST="find . -name '*.,txt'"
for F in $LIST
do
dos2unix $F
done

There's also a numerical version of the “for” statement, similar to
the “for” statement found in C. The syntax for this is:

for ((exprl ; expr2 ; expr3)) ; do list ; done

First, the arithmetic expression exprl is evaluated according to
the rules described below under ARITHMETIC EVALUATION. The
arithmetic expression expr2 is then evaluated repeatedly until
it evaluates to zero. Each time expr2 evaluates to a non-zero
value, list is executed and the arithmetic expression expr3 is
evaluated. If any expression is omitted, it behaves as if it
evaluates to 1. The return value is the exit status of the last
command in list that is executed, or false if any of the expres-
sions is invalid.

You can also use the “seq” command to generate a list of
numbers for use with “for” or anything else. See “man seq” for
details.

The “if”’ Statement:
#1/bin/sh

USER=%$1

if grep -q A$USER: /etc/passwd
then
echo “User already exists”
else
echo “Creating user S$USER...”
useradd $USER
fi

The “if” statement looks at the exit status of the
following command, and does different things
depending on whether the command succeeds
or fails.

Note that I've grabbed $1 and put it into $USER. It's
good practice to put positional variables into new
variables with more descriptive names. This should
be done right at the top of your script.

Examples of “if’ Statements:

Checking the result of a “test” command ([):
if [-f /tmp/junk.dat]

then

rm /tmp/junk.dat
fi

Many options:
if [“$ANSWER” = “yes”]

then
echo 'Yay!'

elif [“$ANSWER” = “maybe”]
then

echo 'There's still hope!'
elif [“$ANSWER” = 'Huh?']
then
echo 'Try again.'
else
echo 'sigh.'
fi

The “case” Statement:

If you're expecting to deal with a lot of options, its often convenient
to use a “case” statement instead of a bunch of if/elif/elif/elif/elif
statements.

case $ANSWER in
yes|YES|y|Y)
echo 'Yay!'

No|NO|n|N)
echo 'Phooey!'

maybe | MAYBE | Maybe)

echo 'Hope remains...'
*)II

echo “Please try again”

r7

esacC

The “while” Statement:

Like “for”, you can also use “while” to do loops:
#!/bin/sh

echo 'How many should I do?'
read LIMIT

VALUE=1

while [$VALUE -le $LIMIT]
do
echo “The value is now $VALUE.”
((VALUE = $VALUE+1))

done

“‘while” looks at the exit value of the following command, and
continues to loop until the command fails.

Thanks!

