\ A
N “\Linux for /| A

Resea-rchers

Chapter4 Terminals, Jobs

Up until now we've talked about mostly static things:
properties of files and users. Now we'll start looking at
dynamic things: the programs that are actually running on
the computer.

The login shell provides us with some tools for managing the
programs we run. We've already talked about some of
these, like pipes and redirects. We'll expand on these
today, and add some new tools.

Then we'll talk about the underlying processes that actually
do the work, and see how to control those, beyond what
the shell can do for us.

Finally, we'll introduce one special process, called “init”".

But first, we'll talk a little more about the good old days...

Part 1: Terminals

Then

Now

Long ago, people communicated with computers through
terminals, like the one on the left, which were connected to the
computer by serial communication lines. Bits sent back and
forth through these serial lines represented characters typed
on the keyboard, or text to display on the monitor.

Although few people use serial terminals any more, the basic
mechanisms of communicating through a terminal persist.
Now we use “terminal emulator” programs, like xterm or
gnome-terminal, to communicate with the computer when
we're running the X window system. Each of these terminal
emulators behaves just like the old serial terminals. Whenever
we talk to a command line, we're still communicating through a
terminal (or “pseudo-terminal”) interface, just as we did long

ago.

Because of this, it's useful to understand how information is
passed to and from terminals.

Character Encoding:

1840s: 1963:

International Morse Code American Standard Code for
Information Interchange (ASCII

1000001 A 1010101
1000010 1010110
1000011 1010111
1000100 1011000
1000101 1011001
1000110 1011010
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100

azh iz agqual b2 Hiras dobs,
m 2ama lakariz squal ko one dot
wttars iz wqual ts thras dos,
dak.

w buke wan parts
wan ol .
wan o wonds iz squal b swvan

1 cu bal
3. Ths apacs bal
i apaca bal

234>

TTr
Eh

i

LN]
"1
N<xE<c i
|
NKNXI <G~

0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001

LR N]
II.
L]

i -

ZErFA—T—IOmmoomis
-
-
-

L
Hn O YWOoOzREERuHTDTQHEHOQW
WO U ™ WN P

Prior to the 1960s, the most widespread way of communicating data
electronically was morse code. When a telegram was sent, its text
was encoded in morse code and transmitted through air or a wire to
its destination, where it was decoded back into text.

Morse code was fine for human telegraphers, but it was clumsy for
computers. In the 1960s the “American Standards Association”
published a new, more computer-friendly way of transmitting text.
This was called the American Standard Code for Information
Interchange (ASCII).

In ASCII, each character is represented by 8 bits of information (1 byte).
When you store text in a file on disk, the text is stored as ASCII
characters. ASCII characters are also the way communications
between a terminal (or pseudo-terminal) and a computer are encoded.

(Actually, other encodings like UTF-8 may be used these days, but the
principle is the same. For simplicity, let's just assume everything is
ASCIL.)

Displaying Text on a Terminal:

~/demo> cat test.txt|

010101000100100001001001010100110010000001001001010160011
00100000010000010010000001010100010001010101001101010100

— O =

24 Rows

80 Columns

If you type a command like “cat test.txt” at the
command line, and test.txt is a text file containing the
string “THIS IS ATEST", this is what happens. The
data in the file is stored on disk as a string of binary
ASCII characters. This data is sent to your terminal,
which displays it by decoding the ASCII data back

into characters.

Old-fashioned serial terminals typically displayed
characters on a grid 80 characters wide and 24
characters tall. This is still the default size for most

terminal emulator programs.

Also note that when you typed “cat test.txt”, the
terminal emulator converted your command into
ASCII and transmitted it to your shell.

Information about Your Terminal:

What's the name of my terminal?

What type of terminal is it?

~/demo> echo $TERM
xterm

~/demo> echo $TERM
linux

~/d emo> tt y A “pseudo-terminal” created for a terminal emulator
window like xterm or gnome-terminal running under
/d eV/ p t S /5 the X window system, or a remote login via ssh.
"‘/d emo> t ty A “virtual console”. You'll see this if you sit down at
a Linux computer that's not running X.
/dev/ttyl g

This says that the terminal is either
the “xterm” terminal emulator, or
some other program that acts like
an xterm.

This is what you'll see when sitting
at a Linux computer that's not
running X.

The “who” and “w” Commands:

The “who” command tells you who's logged in interactively, which
terminals they're using, and when they logged in. (There's also some
information about X displays, but we'll save that for later.)
~/demo> who

elvis pts/8 2009-02-04 07:28 (:1001)
elvis pts/12 2009-01-29 07:30 (:1000)

[TAnet)

The “w” command gives you more information. It also tells you about each user's idle time
and CPU usage, and tells you what program the user is currently running.

~/demo> w

10:28:02 up 40 days, 5 min, 3 users, load average: 0.18, 0.20, 0.12
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

elvis pts/8 11001 07:28 2:59m 2.18s 0.09s -bin/tcsh
elvis pts/12 11000 29Jan0@9 6days 2.20s 0.10s -bin/tcsh

[7A)

Note that both “who” and “w” may display inaccurate or misleading information about
users who are logged in locally through terminal emulator windows under X. The
information should be accurate for remote logins through ssh, though.

Part 2: Jobs

The bash and tcsh command line shells provide users
with some tools to manage multiple simultaneous
jobs.

Jobs are a convenient way of managing the
underlying processes that are really doing the work.
There are many mechanisms for starting and
managing processes. The shell's job control
mechanism is just one of them.

In this section, we'll talk about how the shell handles
jobs, and then we'll move on to talking about the
underlying processes in the next section.

Canceling a Command with Ctrl-C:

~/demo> myprogram
Processing number
Processing number
Processing number
Processing number
Processing number
Processing number
Processing number

[oNoNoNoNoNoNO)

Most interactive command-line programs can be killed by typing
Control-C (that is, holding down the “ctrl” key and pressing “c”).

This sends a signal to the running process, telling it to terminate
immediately. The process has the option of ignoring this signal,
but most programs will honor it.

Oh no! | forgot to tell it to increment the count! It's in an
infinite loop!

Suspending/Resuming with Ctrl-Z and “fq’’:

~/demo> myprogram
Processing number
Processing number
Processing number
Processing number
Processing number
Processing number
Processing number

Hold on a
minute...

OO hhwWNEO

Suspended

L fem]
~/demo> jobs

[1] + Suspended myprogram

~/demo> fg

myprogram ‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Processing number 7 ...))
Processing number 8 ... Or, altenatively:

Processing number 9 ... ‘fg %1”
Processing number 10 ...

You can suspend a running program by typing Ctrl-Z. The program will stop
executing, but it will remain frozen in memory. You start it again with the “fg”
command (for “foreground”). The “jobs” command will show you suspended jobs.

The number in square brackets at the beginning of the
output is a “job specifier”. If you have more than one
job, you can tell fg which one to foreground by giving
it the job specifier, preceded by a “%” sign. (E.g., “fg
%17).

When you log out, you'll be warned if you have any
suspended jobs. If you continue to log out, the jobs
will die.

The “jobs” Command:

Here's an example showing the output of the “jobs” command
when the shell is managing several jobs:

~/demo> jobs

[1] + Suspended myprogram
[2] - Suspended myprog2
[3] Suspended otherprog
[4] Suspended prog4

The columns are:

Job Specifier. This is a number that uniquely identifies the job. In commands like
“fg”, you can choose a particular job by giving a “%” and the job specifier, like “fg %2”.

Current. A“+” in this field means that this is the “current” job. Commands like “fg”, if
not explicitly given a job specifier, will operate on this job. A“-”in this field means that
this is the “next” job. It will become the current job when the current job finishes.
State. This can be “Suspended”, “Running”, “Stopped” or “Done”.

Command. The name of the command being run by this job.

Sending Jobs to the Background with “bqg’’:

~/demo> myprogram
Processing number 0 ...

Processing number 1 ...

Suspended
~/demo> jobs
[1] + Suspended myprogram

~/demo> bg
[1] myprogram &

‘/////////////////,,,///VVegetaconunand;xomptback
~/demo>

Processing number 7 ...
Processing number 8 ... But any output will continue

Processing number 9 ... to pop up, whenever the
Processing number 10 ... program says anything.

If you want a job to continue running while you go on and do
other things, you can use the “bg” (for “background”) command
to put it into the background. The job will continue to run, and
you'll see any output it generates.

This is useful, but it has two problems:

1. The output from your program may be annoying
while you're trying to do other things.

2. If you log out, your backgrounded jobs may die.
This will happen if the backgrounded job tries to read
or write anything interactively. Once you've logged
out, the program will get an error if it tries to ask you
for input or write any output to the terminal, because
those devices are no longer available.

Redirecting stdin/stdout/stderr for Background Jobs:
/dev/pts/3

By default, stdin is connected to the terminal's
keyboard, and stdout and stderr are connected ——
to the the terminal's display... ~/demo>

stdout

J

myprogram u

stderr

= A\

...but we can redirect them elsewhere, to eliminate dependence on interactive I/O devices:

Tcsh syntax: Bash syntax:
‘myprogram < file.in >& file.out‘ ‘myprogram < file.in > file.out 2>&1‘

If we can connect the I/O channels to something other
than our current display and keyboard, we can think
about putting the job in the background, logging out,
and coming back later to check on it.

We've already seen how to redirect stdout and stderr.
Now we see that stdin can be redirected also, with
the “<” character.

The commands above say “run myprogram, reading
input from 'file.in' and writing output and errors into

file.out".”

We could start the program this way, and then type
Ctrl-Z to suspend it, and “bg” to background it, or....

Starting a Job in the Background:

Tcsh syntax:
‘~/dem0> myprogram < /dev/null >& myprogram.out &\

Bash syntax: /

|~/demo> myprogram < /dev/null > myprogram.out 2>&1 &

_

Appending an ampersand to the end of a command causes the command to
be put into the background immediately.

~/demo> jobs
[1] + Running ./myprogram < /dev/null >& myprogram.out

If you don't need to give your program any input, and if
you don't want to create an empty file to point stdin
at, you can just use the handy “null device”, /dev/null.
This should always be present.

By default, when the shell starts a program the
program's stdin, stdout and stderr all point to the
user's terminal. Remember the general principle in
Linux that “everything is a file”? Well, the terminal
appears to the operating system as though it were
just another file, with a name like “/dev/pts/3” or
some such. By default, the shell points stdin, stdout
and stderr to this file, just as though you'd typed
something like:

myprogram < /dev/pts/3 >& /dev/pts3

Jobs and Processes:

A job running in the foreground.

Operating System

Processes

PID=745
tcsh

PID=907
mush

top

PID=295

PID=36

myprogram

PID=123

PID=79
pine

Ghostview

PID=476
mozilla

PID=764

Firefox

PID=496
acroread

PID=15
acroread

The shell's job control features just provide a convenient way
of dealing with processes running in the operating system.

The shell's fg and bg commands, the jobs command, and all
the tools for controlling jobs, are just handles to make the
management of the underlying processes more convenient.
You might think of the relationship between “job” and
“process” as something like the relationship between

bowling-ball-case and bowling ball.

Jobs are just containers for processes spawned off by the
shell. The shell gives you a convenient “job specifier” to
refer to each job, separate from the “process ID” of the
contained process. The shell can connect jobs to your
terminal, or to each other, through the processes' stdin and

stdout channe

|s.

The User

Pipelines:

The command Is -al | grep file.dat | awk ‘{print $2}' I “/demo>
|
Operating System
Processes
| A
PID=745 —
tesh PID=36 1
awk stdg
PID=295 stdin
top The User
PID=907 stdou
mush
PID=79 PID=123
pine grep
PID=764 -
Firefox stdin
PID=476
mozilla stdou
’ |
PID=496 PID=15 1
acroread Is
|
r |
|

The Shell creates pipelines by creating jobs and
connecting the jobs' processes together through their
stdin and stdout channels.

Jobs and Mutiple Terminals:

Each instance of the shell (e.g., each terminal window) has its own I
set of jobs. A particular shell only has knowledge of its own jobs. |

Operating System

PID=123
grep

Processes
PID=745
tcsh
PID=295
top
PID=907
mush
PID=79
pine
PID=764
Firefox
PID=476
mozilla
PID=496
acroread

PID=15
Is

PID=20
top

7.

The User

Terminal 1

Terminal 2

Notice that each shell has its own set of “job
specifiers”, but the “process IDs” (PIDs) are unique
across the whole operating system.

Part 3: Processes

So, what are processes?

The Structure of a Process:

euid egid

Name ruid rgid

Executable

File Descriptors

stdin

stdout

stderr

Every process has a unique numerical identifier called
a “process ID” or “PID”, analogous to the UID for a
user or the GID for a group.

The ownership of a process is specified by UID and
GID values stored within the process. Each process
has two pairs of these: “effective” UID and GID and
“real” UID and GID.

Each process has an associated “executable”, which is
usually a program stored on disk. (Sometimes the
kernel will create processes on its own, and these
don't point to a separate program.)

The process has a list of file descriptors, which point to
the process's stdin/stdout/stderr and any other files
the program currently has open for reading or writing.

The “ps” Command:

~/demo> ps
PID TTY

11387 pts/19

30922 pts/19

TIME CMD

00:00:00 ps

00:00:00 tcsh

Just show processes belonging to me, and

associated with the current terminal

session. Or...

Show all processes, and show their “family
trees”.

Y
~/demo> ps auxf
USER PID %CPU %MEM Vsz RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 2080 600 ? Ss 2008 0:02 init [3]
root 372 0.0 0.1 2436 856 ? S<s 2008 0:01 /sbin/udevd -d
root 4182 0.0 0.1 12144 696 ? S<sl 2008 0:10 auditd
root 4184 0.0 0.1 12060 696 ? S<sl 2008 0:05 _ /sbin/audispd
root 4217 0.0 0.1 1728 576 ? Ss 2008 0:09 syslogd -m 0
root 4220 0.0 0.0 1684 416 ? Ss 2008 0:00 klogd -x
dbus 4386 0.0 0.2 2880 1140 ? Ss 2008 0:02 dbus-daemon --system
root 4528 0.0 0.2 11440 1168 ? Ssl 2008 0:01 automount
root 4552 0.0 0.1 1676 548 ? Ss 2008 0:00 /usr/sbin/acpid
root 4626 0.0 0.1 2736 852 ? Ss 2008 0:00 xinetd -stayalive -pidfile
root 4692 0.0 0.2 5284 1116 ? Ss 2008 0:01 crond
root 4759 0.0 0.0 2260 448 ? Ss 2008 0:00 /usr/sbin/atd
68 4887 0.0 0.7 5512 3532 ? Ss 2008 0:01 hald
root 4888 0.0 0.2 3148 988 ? S 2008 0:00 _ hald-runner
68 4895 0.0 0.1 2008 792 ? S 2008 0:00 _ hald-addon-acpi: listening on
68 4899 0.0 0.1 2004 792 ? S 2008 0:00 _ hald-addon-keyboard: listening
root 4905 0.0 0.1 1960 628 ? S 2008 52:22 _ hald-addon-storage: polling
root 5134 0.0 0.2 2848 1332 ? SN 2008 0:00 /usr/libexec/gam_server
root 5512 0.0 0.1 2320 752 ? Ss 2008 0:01 /sbin/dhclient -1 -q -1f
root 5759 0.0 0.0 1948 356 ? S 2008 0:00 /usr/sbin/smartd -q never
root 5770 0.0 0.2 2872 1256 ? Ss 2008 0:00 login -- root
root 10665 0.3 0.2 4540 1404 ttyl Ss 17:53 0:00 _ -bash
root 10697 0.0 0.1 4232 904 ttyl R+ 17:54 0:00 _ ps auxf
root 5771 0.0 0.0 1664 436 tty2 Ss+ 2008 0:00 /sbin/mingetty tty2
root 5775 0.0 0.0 1668 440 tty3 Ss+ 2008 0:00 /sbin/mingetty tty3
root 5785 0.0 0.0 1664 460 tty4 Ss+ 2008 0:00 /sbin/mingetty tty4
root 5786 0.0 0.0 1668 436 tty5 Ss+ 2008 0:00 /sbin/mingetty tty5
root 5787 0.0 0.0 1668 440 tty6 Ss+ 2008 0:00 /sbin/mingetty tty6
root 5702 0.0 0.1 7044 1056 ? Ss Jan22 0:04 /usr/sbin/sshd
elvis 7123 0.0 0.2 10040 2860 ? Ss Jan30 0:00 _ sshd: elvis@pts/0
elvis 7125 0.0 0.1 4532 1452 pts/0 Ss Jan30 0:00 _ -bash
elvis 27760 0.0 0.0 4212 904 pts/0 R+ 18:00 0:00 _ ps auxf

The “ps” command can shows information about
processes, much as the “Is” command shows

information about files.
The “user” field shows the username of the owner of
each process.

%CPU and %Mem show what fraction of these
resources the process is currently using.

VSZ and RSS are two measures of how much memory

the process is using.

The TTY column shows the name of any terminal that's

attached to this process.

The STAT column tells us what the process is currently

doing. Entries beginning with “R” are running.
Entries beginning with “S” are sleeping.

The “top” command:

The “top” command gives a continuously-updating display showing what's
happening on a computer. It packs a lot of information into a small space. The
upper part of the display has information about users, memory, load, etc., and the
lower part of the display has information about processes. By default, the display is
sorted so that processes using the largest fraction of the available CPU time are
displayed at the top.

CPU Hog!
~/demo> top

top - 18:23:14 up 187 days, 8:08, 4 users, load average: 1.05, 1.03, 1.00
Tasks: 215 total, 2 running, 213 sleeping, 0 stopped, 0 zombie
Cpu(s): ©0.6%us, 0.2%sy, 0.0%ni, 99.0%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 4017152k total, 3990516k used, 26636k free, 3776k buffers
Swap: 2031608k total, 333196k used, 1698412k free, 3511864k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32043 ef2p 25 0 70756 34m 14m R 160 0.9 4:24.05 analyzer
32197 bkwila 15 0 2436 928 660 R 2 0.0 0:00.01 top
1 root 15 0 2080 632 544 S 0 0.0 0:01.60 init
2 root RT -5 0 0 oS 0 0.0 0:19.57 migration/0
3 root 34 19 0 0 0S 0 0.0 0:14.26 ksoftirqd/e
4 root RT -5 0 0 0S 0 0.0 0:00.00 watchdog/0
5 root RT -5 0 0 oS 0 0.0 0:12.85 migration/1
6 root 34 19 0 0 0S 0 0.0 0:04.38 ksoftirqd/1
7 root RT -5 0 0 0 S 0 0.0 0:00.00 watchdog/1
8 root RT -5 0 0 0Ss 0 0.0 0:09.87 migration/2
9 root 39 19 0 0 0 S 0 0.0 0:03.24 ksoftirqd/2
10 root RT -5 0 0 0S 0 0.0 0:00.00 watchdog/2
11 root RT -5 0 0 0Ss 0 0.0 0:11.41 migration/3
12 root 34 19 0 0 0S 0 0.0 0:03.63 ksoftirqd/3

Some interesting information:

- Uptime. This shows how long the computer has been
running.

- Number of users currently logged in.

- Load average. Think of this as the average number
of processes running at any given time. The three
numbers are rolling averages over 1, 5 and 15
minutes.

- Memory. This shows the amount of total memory and
free memory, and has data about swap space usage.

The “watch” Command:

Wouldn't it be nice if you could make any command continuously-updating, like top?
You can, with the “watch” command. By default, watch re-executes a command
every two seconds, and updates the display to show how the command's output
has changed.

~/demo> watch w

Every 2.0s: w Wed Feb 4 10:58:20
2009

10:58:20 up 40 days, 35 min, 2 users, load average: 0.06, 0.17, 0.13
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
elvis pts/12 11000 29Jan0@9 6days 2.21s 0.10s -bin/tcsh
elvis pts/8 11001 07:28 2:59m 2.18s 0.09s -bin/tcsh

~/demo> watch stat junk.dat

Every 2.0s: stat junk.dat Wed Feb 4 11:02:43
2009

File: “junk.dat'

Size: 14 Blocks: 8 I0 Block: 4096 regular file
Device: fdooh/64768d Inode: 10321951 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/ bkwila) Gid: (501/ bkwila)
Access: 2009-02-04 10:54:59.000000000 -0500
Modify: 2009-02-04 09:28:04.000000000 -0500
Change: 2009-02-04 09:28:04.000000000 -0500

Niceness:

One of the columns “top” displays is “NI”, for “Niceness”. Each process has a niceness
value between -20 and 20. By default, processes start off with a niceness of zero.
Processes with higher niceness are more willing to give up the CPU when another
process wants to use it. Critical system processes are often run at negative niceness
values, since it's important that they have access to the CPU when they need it. Low-
priority processes may run with a very high niceness, so they only get the CPU when
nothing else wants it. Non-root users can adjust the niceness of their processes, but
they can't lower it below its initial value.

~/demo> renice 15 32043 |«——— (assuming I'm ef2p!)

~/demo> top
top - 18:23:14 up 187 days, 8:08, 4 users, load average: 1.05, 1.03, 1.00
Tasks: 215 total, 2 running, 213 sleeping, 0 stopped, 0 zombie
Cpu(s): ©0.6%us, 0.2%sy, 0.0%ni, 99.0%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 4017152k total, 3990516k used, 26636k free, 3776k buffers
Swap: 2031608k total, 333196k used, 1698412k free, 3511864k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32043 ef2p 25 15 70756 34m 14m R 100 0.9 4:24.05 analyzer
32197 bkwila 15 0 2436 928 660 R 2 0.0 0:00.01 top
1 root 15 0 2080 632 544 S 0 0.0 0:01.60 init
2 root RT -5 0 0 oS 0 0.0 0:19.57 migration/0
3 root 34 19 0 0 0S 0 0.0 0:14.26 ksoftirqd/e
4 root RT -5 0 0 0S 0 0.0 0:00.00 watchdog/0
5 root RT -5 0 0 oS 0 0.0 0:12.85 migration/1
6 root 34 19 0 0 0S 0 0.0 0:04.38 ksoftirqd/1
7 root RT -5 0 0 0S 0 0.0 0:00.00 watchdog/1
8 root RT -5 0 0 0Ss 0 0.0 0:09.87 migration/2
9 root 39 19 0 0 0S 0 0.0 0:03.24 ksoftirqd/2
10 root RT -5 0 0 0S 0 0.0 0:00.00 watchdog/2
11 root RT -5 0 0 0Ss 0 0.0 0:11.41 migration/3
12 root 34 19 0 0 0S 0 0.0 0:03.63 ksoftirqd/3

The “kill” and “killall” Commands:

Operating System

Processes

& | PID=745 _ > -
tcsh PID=36 /demO klll 123
| nfsd p
PID=295 ﬁGTERM
top

PID=907 s rd :
mush CSIVIEW .{ ~/demo> kill -9 764
PID=79 -
pine _ “SBIGKILL or...
PID=764 & ~ ‘~/demo> kill -KILL 764
Firefox
PID=476 PID=15
mozilla acrpread
PID=496 A
acroread \SIGTERM
W

~/demo> killall acroread\

How can we control a process? One way is by sending
it “signals”.

The “kill” command can be used to send signals to
processes. The name is misleading, because only
some of the signals will normally result in killing the
process. Killing processes was the original purpose
of the command, and the name stuck even after the
command's purpose was expanded. (Maybe a better
name would be “signal”.)

By default, the “kill” command will send a “SIGTERM”
signal to a process. You can modify this behavior by
specifying a signal, either by number or by name.

Signals:

Signals are sent to processes as 5-bit values (0-31). This is the basic set of signals
that should be available under any Unix-like operating system. Two of these
signals, SIGKILL (9) and SIGSTOP (19) are special, because processes can't
ignore them or catch them.

Signal Value Default Comment
Action
SIGHUP 1 Term Hangup detected on controlling terminal or death of controlling
process
SIGINT 2 Term Interrupt from keyboard Sent by Ctrl-C
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core lllegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
SIGFPE 8 Core Floating point exception

SIGKILL 9 Term Kill signal

SIGUSR1 10 Term User-defined signal 1

SIGSEGV 11 Core Invalid memory reference

SIGUSR2 12 Term User-defined signal 2

SIGPIPE 13 Term Broken pipe: write to pipe with no readers

SIGALRM 14 Term Timer signal from alarm(2)
SIGTERM 15 Term Termination signal
SIGCHLD 17 Ign Child stopped or terminated
SIGCONT 18 Cont Continue if stopped = [Sent by “fg” or “bg”}
SIGSTOP 19 Stop Stop process
SIGTSTP 20 Stop Stop typed at tty = Sent by Ctrl-Z
SIGTTIN 21 Stop tty input for background process

SIGTTOU 22 Stop tty output for background process

The SIGTTIN and SIGTTOU signals are received by a
process when it tries unsuccessfully to read input or
write output to a terminal. By default, these signals
cause the process to stop, just as a SIGSTOP would
do.

References like “alarm(2)” and “abort(3)” refer to man
pages. For example, “alarm(2)” refers to the man
page for the term “alarm” in section 2 of the man
pages. You could view it by typing “man 2 alarm”.

Signal Actions:

Several pre-defined actions are available for processes to take when they receive a
signal. Processes may also define their own signal-handling functions for any signals
except SIGKILL and SIGSTOP.

Action Description

Term Terminate the process.

Ign Ignore the signal.

Core Terminate the process and dump core
(see core(H)).

Stop Stop the process.

Cont Continue the process if it is currently
stopped.

Catch Call a predefined signal-handling func-
tion.

The /proc Filesystem:

The /proc directory doesn't exist on-disk. It's created in memory and kept up-to-date by the
kernel. If you look into /proc, you'll see a bunch of directories, each with a number as its name.
Each of these numbers is the PID of a process, and the directory contains information about
the process with that PID. Here's a typical example:

[root@demo ~]# 1ls -1 /proc/19335
total ©

dr-xr-xr-x 2 elvis elvis © Feb 3 15:13 attr

B 1 elvis elvis © Feb 3 15:13 auxv

-r--r--r-- 1 elvis elvis 0 Feb 3 15:13 cmdline

-rW-r--r-- 1 elvis elvis 0 Feb 3 15:13 coredump_filter

-r--r--r-- 1 elvis elvis © Feb 3 15:13 cpuset

1rwxrwxrwx 1 elvis elvis 0 Feb 3 15:13 cwd »>

B 1 elvis elvis © Feb 3 15:13 enviro

1rwxrwxrwx 1 elvis elvis 0 Feb 3 15:13 exe »>

dr-x------ 2 elvis elvis © Feb 3 15:13 fd : ;

B 1 elvis elvis 0 Feb 3 15:13 lim Open file descriptors.
B 1 elvis elvis 0 Feb 3 15:13 limits 0 -> /dev/pts/19
-rw-r--r-- 1 elvis elvis @ Feb 3 15:13 loginuid 1 -> /dev/pts/19
-r--r--r-- 1 elvis elvis @ Feb 3 15:13 maps 2 -> /dev/pts/19
B pp——— 1 elvis elvis 0 Feb 3 15:13 mem 3 -> /proc/uptime
-r--r--r-- 1 elvis elvis @ Feb 3 15:13 mounts 4 -> /proc/loadavg
S 1 elvis elvis @ Feb 3 15:13 mountstats 5 -> /proc/stat
-rw-r--r-- 1 elvis elvis @ Feb 3 15:13 oom_adj 6 -> /proc/meminfo
-r--r--r-- 1 elvis elvis 0 Feb 3 15:13 oom_score Each entry is a symbolic
1rwxrwxrwx 1 elvis elvis 0 Feb 3 15:13 root -> / link. The numerical name
-r--r--r-- 1 elvis elvis 0 Feb 3 15:13 schedstat ;] ;
“r-------- 1 elvis elvis @ Feb 3 15:13 smaps Iasnzlglllfedsﬁglgttggufj
-r--r--r-- 1 elvis elvis © Feb 3 15:13 stat !
-r--r--r-- 1 elvis elvis 0 Feb 3 15:13 statm and stderr.

-r--r--r-- 1 elvis elvis © Feb 3 15:13 status

dr-xr-xr-x 3 elvis elvis © Feb 3 15:13 task

-r--r--r-- 1 elvis elvis 0 Feb 3 15:13 wchan

The /proc filesystem contains everything you should
need to know about processes running on the
computer. Tools like “ps” and “top” look at /proc to
get the data they display for you. You can also look
at /proc directly if you want. Each file in /proc
contains only plain text.

The “Isof’ Command:

The Isof command can list the open files associated with a given process.

The Isof command also gets its information from /proc.

[root@demo ~]# lsof -p 19335
COMMAND PID USER ED TYPE DEVICE SIZE NODE NAME
top 19335 elvis | cwd [DIR 253,0 4096 29592275 /home/elvis
top 19335 elvis | rtd —DIR 53,10 4096 2/
top 19335 elvis | txt 253,10 62200 33185251 /usr/bin/top
top 19335 elvis | mem 253,10 16680 34766935 /1ib/libnss_files-2.5.s0
top 19335 elvis | mem 253,00 185032 34768080 /lib/libncurses.so0.5.6
top 19335 elvis | mem 253,00 1P5736 34766911 /1ib/1d-2.5.s0
top 19335 elvid™ mem 253,00 1614588 34766856 /1ib/i1686/nosegneg/libc-2.5.s0
top 19335 elvis | mem 253,10 53856 34768103 /1lib/libproc-3.2.7.s0
top 19335 elvis | mem 253,10 16428 34766870 /1ib/1ibdl-2.5.so0
top 19335 elvis [mem 253,10 05060 34768079 /1lib/libtinfo.s0.5.6
top 19335 elvis Ou 136, 19 21 /dev/pts/19
top 19335 elvis 1u 136, 19 21 /dev/pts/19
top 19335 elvis 2u 136, 19 21 /dev/pts/19
top 19335 elvis 3r 0,3 0 4026531841 /proc/uptime
top 19335 elvis 4r 0,3 0 4026531840 /proc/loadavg
top 19335 elvis 5r 0,3 0 4026531853 /proc/stat
top 19335 elvis 6‘ 0,3 0 4026531842 /proc/meminfo
Current working directory

Root directory
“Text” segment of a binary executable

File descriptors

Shared libraries, mapped into memory

The “fuser” Command:

The fuser command is like the inverse of Isof. It tells you what processes are using a given
file or directory.

[root@demo ~]# fuser /usr/bin/top
/usr/bin/top: 19335e

[root@demo ~]# fuser /lib/1ibdl-2.5.so

/1lib/1ibdl-2.5.s0: 1m 1275m 1345m 1347m 2153m 2167m 4422m
4441m 4446m 8500m 8512m 12605m 12615m 12623m 12626m 13950m 13968m
14735m 14766m 15742m 15744m 18110m 18163m 18165m 18166m 18280m 18281m
18283m 18288m 18290m 18314m 18569m 18572m 18573m 18588m 18590m 18592m
18822m 18823m 18825m 18828m 18829m 18872m 18874m 18877m 18878m 18926m
18929m 18931m 18933m 18940m 18941m 18943m 18945m 18946m 18952m 18960m
18974m 19001m 19016m 19303m 19335m 20306m 20307m 20308m 20309m 20348m
23073m 23547m 26132m 26134m 26183m 26185m 26190m 26192m 26492m 26494m
26724m 26725m 26726m 26730m 26738m 26774m 26776m 26779m 26780m 26823m
26828m 26831m 26833m 26835m 26843m 26844m 26846m 26848m 26849m 26860m
26865m 27449m 27451m 27943m 27944m 28330m 28344m 28385m 28558m 29746m
29983m 30920m 31212m 31214m

Fuser, too, gets its information from /proc. The letters
after the PIDs tell you how the file is being used by
the given process. The “e” in the first example
means that the process is executing this file.

The “strace” Command:

The strace command allows you to attach to a running process and see the system
functions it calls as it works. This makes strace a very useful debugging tool.

[root@demo ~]# strace -f -p 12345

ioctl(0, FIONREAD, [134917803]) = -1 ENOTTY
(Inappropriate ioctl for device)

read(o, "", 1) =0

ioctl(0, FIONREAD, [134917803]) = -1 ENOTTY
(Inappropriate ioctl for device)

read(o, "", 1) =0

ioctl(0, FIONREAD, [134917803]) = -1 ENOTTY
(Inappropriate ioctl for device)

read(o, "", 1) =0

ioctl(®, FIONREAD, [134917803]) = -1 ENOTTY
(Inappropriate ioctl for device)

read(o, "", 1) =0

ioctl(®, FIONREAD, [134917803]) = -1 ENOTTY
(Inappropriate ioctl for device)

The strace output above comes from a problem we
recently had with someone's program. It shows that
the process was trying to communicate with a
terminal on stdin, and was continually calling the
“read” and “ioctl” functions on file descriptor zero
(stdin).

The program was running detached from a terminal, so
the ioctl function failed (“ENOTTY”, means there was
an error because there was no terminal available).
Reconfiguring the program so that it didn't try to read
from stdin fixed the problem.

Part 4: The “init” Process

The “init” Process:

PID=1
« init is the first process started while a computer is booting init

* It always gets PID=1.

* Init is just a program, usually in /sbin/init. (The boot process
has a built-in default value for this path, but it can be overridden
manually at boot time.)

« It's init's responsibility to start up all of the other processes to
complete the boot process.

* init reads the file /etc/inittab to see what processes need to be
started.

* Entries in /etc/inittab are tied to specific “runlevels”. The
runlevel is a number, usually between 0 and 6, that tells init
which set of processes to start.

Note that only a few runlevels have standard meanings
across all Linux distributions. Other than these
standards, vendors are free to use the runlevels in
any way they choose.

We'll talk much more about init when we start talking
about network services. For now, this is just a quick
introduction.

The /etc/inittab File:

Default runlevel. The runlevels used by RHS are:
0 halt (Do NOT set initdefault to this)
1 - Slngle user mode
2 - Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

#
#
#
#
#
#
#
#
#
1

In this case, the default

id:5:initdefault: - .
runlevel is 5

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit“\\\\\\\\\\\\))
This gets run before anything else

10:
11:
12:
13:
14:
15:
16:

rwait:/etc/rc.d/rc
rwait:/etc/rc.d/rc
twait:/etc/rc.d/rc
twait:/etc/rc.d/rc
twait:/etc/rc.d/rc
twait:/etc/rc.d/rc
twait:/etc/rc.d/rc

These start up the appropriate
processes for each runlevel

OUAWNREO
OUDAWNREO

) In runlevels 2,3,4 and 5, make
Run gettys in standard runlevels :

:2345:respawn: /shin/mingetty ttyi sure the virtual ConSOIe.
12345:respawn: /sbin/mingetty tty2 / processes are always running
2345:respawn:/sbin/mingetty tty3

12345:respawn:/sbhin/mingetty tty4
:2345:respawn:/shin/mingetty tty5
:2345:respawn:/shin/mingetty tty6

Keep the X display manager
Run xdm in runlevel 5 / running in runlevel 5
:5:respawn:/etc/X11/prefdm -nodaemo

Runlevels 0,1 and 6 (halt, single-user mode and
reboot) are standard across all Linux distributions.
The use of the other numbers varies widely. The
example above is from a Red Hat-derived system.

OUThWNREH

3+

X

... but wait....

Lennart Poettering, father of sysie

All of the preceding stuff about "init" was true for many
years. Recently, though, many Linux distributions
have replaced init with a new tool, "systemd".
Systemd aims to replace init and other parts of the
operating system with a highly integrated framework
that manages booting, network services, and many
other things.

Systemd is still highly controversial, and the
community of Linux developers is split on whether
systemd is a good thing or a bad thing.

We'll talk more about systemd when we address
network services and how they're started.

Thanks!

