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Physics 2660
Lecture 8

Today
�A taste of C++, functions in structures -> classes
� Searching & Sorting
� Interpreting experimental uncertainties
� Combining / propagating uncertainties in experiments 
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Part 0: Forces and MassesPart 0: Forces and Masses

Let's start out today by talking about the gravity 
problems you've been working on in the last couple 
of homework sets.
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The Problem:
We want to read in the position vectors, initial velocities, and masses of a 
bunch of objects.  Then, using this data, we want to calculate the 
gravitational force on each object, due to the others.  (For the first part, 
we'll ignore the initial velocities.)

Here's one of our objects.  It has mass �m�, and it's 
located at position X.  The calculated force on it is F.
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F = Fb + Fc + Fd

Adding the Forces:

To find the total force on one mass, we just add the force vectors due 
to each of the other forces.
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Finding Distance and Direction:

r  = Xb - Xa 

r = | r | 

u = r / r 

We'll need to know the distance 
and direction to each other object.

This is the vector from a to b:

The magnitude of this vector 
gives us the distance:

Once we know these, we can 
make a unit vector pointing from 
a to b:

u



  

 



  

 

  7

typedef struct{
  double s_vec[3];  // space(position) vector
  double v_vec[3];  // velocity vector 
  double f_vec[3];  // force vector
  double mass;
} body;

const int MAX_BODIES = 100;
body bodies[MAX_BODIES];  // array of bodies

Data Structure:

To solve this problem programmatically, we'll first need a data structure 
to store information about each body:



  

 

  8

int read_data(char* file, body *bodies){
  int num=0; // number of entries read from file
  int status;
  FILE *file_p = fopen(file,"r");

  while(num<MAX_BODIES) {
    status=fscanf(file_p,"%lf %lf %lf %lf %lf %lf %lf",
                  &bodies[num].s_vec[0], 
                  &bodies[num].s_vec[1], 
                  &bodies[num].s_vec[2],
                  &bodies[num].v_vec[0], 
                  &bodies[num].v_vec[1], 
                  &bodies[num].v_vec[2],
                  &bodies[num].mass);
    if (status==EOF) break;
    num++;
  }
  return num;
}

Position

Velocity

Mass

Reading Data from a File:

Here's an example of a function that can read data 
from a file and fill the data structure on the previous 
page.  Notice that it takes a file name as an 
argument, then just opens the file and reads the 
contents.  (If we were better programmers, we'd also 
take the trouble to close the file when we were done 
with it.)

Notice that the function will only read up to 
MAX_BODIES bodies, since this is the size of our 
array.  If there are more bodies than this in the file, 
the remaining ones will be ignored.

If the function gets to the end of the file before it 
reaches MAX_BODIES, it stops.  The function 
returns �num�, the number of bodies actually read.
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// Find distance between two points:
double distance(double *svec1, double *svec2){
  double dist2=0;
  int i;
  for (i=0; i<3; i++) 
    dist2 += (svec1[i]-svec2[i])*
             (svec1[i]-svec2[i]);
  return sqrt(dist2);
}

// Find difference of two vectors:
void vsub(double *v1, double *v2, double *v1m2){
  int i;
  for (i=0; i<3; i++) 

 v1m2[i] = v1[i]-v2[i];
}

Some Useful Functions:

(x1-x2)
2 + 

(y1-y2)
2 + 

(z1-z2)
2

diff = [(x1-x2), 
          (y1-y2), 
          (z1-z2)]

The �distance� function just calculates the distance 
between two points in three-dimensional space.  You 
can think of this as the magnitude of the vector �r� 
pointing from one body to another.

The �vsub� function subtracts one vector from another, 
to produce a third vector.   You can think of this as 
the �r� vector itself.
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void forces(body *bodies, int nbodies){
  double dist, force;
  double dirvec[3];
  const double G = 6.67e-11;

  for(int i=0; i<nbodies; i++){
    bodies[i].f_vec[0]=0;
    bodies[i].f_vec[1]=0;
    bodies[i].f_vec[2]=0;
    for(int j=0; j<nbodies; j++){

if ( i!=j ) {
        dist = distance(bodies[i].s_vec,bodies[j].s_vec);
        vsub(bodies[j].s_vec,bodies[i].s_vec,dirvec);
        dirvec[0] /= dist; 
        dirvec[1] /= dist;
        dirvec[2] /= dist;
        force = G*bodies[i].mass*bodies[j].mass/(dist*dist);
        for(int k=0; k<3; k++) {
          bodies[i].f_vec[k] += force*dirvec[k];

}
      }
    }
  }
}

Calculating the Forces:

Here's a function that calculates the total force on each object, 
due to all the other objects.  Notice the if statement �( i!=j)� that 
omits the object itself from the calculation.

The function uses the �distance� and �vsub� functions we saw in 
the previous slide.

The vector �dirvec� is the unit vector pointing from one mass to 
the other.  We get it by dividing the �r� vector by its length.

Finally, note that, although this function has a double loop that 
goes through all the objects, we could really get by with only 
half as many iterations, since the mutual forces on each pair of 
objects are equal and opposite.  If we were clever, we could 
take advantage of this and write the function so that we just 
calculate each pair of forces once.
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Trajectories:

m
F

v

m
a

v
F = m a

a = F / m

vold
vnew

�v

F = m a

�V = a �t

Vnew = Vold + V�

That takes care of most of the static stuff.  Now to set 
things in motion...

First, we'll need to think about the velocities and 
accelerations of the objects.  Since we know the 
forces now, we can calculate the accelerations.

Once we know the accelerations, we can calculate the 
change in velocity after a time step of delta t.
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void evolve(body *bodies, int nbodies, double delta_t){
  for (int i=0; i<nbodies; i++) {
    for (int j=0; j<3; j++){

      double acceleration_j = 
             bodies[i].f_vec[j] / bodies[i].mass;

      bodies[i].s_vec[j] += bodies[i].v_vec[j]*delta_t;

      bodies[i].v_vec[j] += acceleration_j * delta_t;
    }
  }
}

Calculating Trajectories:

aj = Fj/m

x,y,z
xj

new = xj + vj �t

vj
new = vj + aj �t

Here's one simple way to approximate the motion of the objects. 
 Here, we assume a constant velocity during each time step:
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void evolve(body *bodies, int nbodies, double delta_t){
  for (int i=0; i<nbodies; i++) {
    for (int j=0; j<3; j++){

      double acceleration_j = 
        bodies[i].f_vec[j] / bodies[i].mass;

      bodies[i].s_vec[j] +=
    (bodies[i].v_vec[j]*delta_t+0.5*acceleration_j*delta_t*delta_t);

      bodies[i].v_vec[j] += acceleration_j * delta_t;
    }
  }
}

A Better Approximation:

aj = Fj/m

x,y,z
xj

new = xj + vj �t + ½ aj t� 2

vj
new = vj + aj �t

Here's a better approximation.  In this version, we only assume 
a constant acceleration during each time step:
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Orbits:

A good way to check the sanity of your program is to 
write out x,y,z values for one of the bodies into a file, 
and then plot them with gnuplot.  (The output file 
should just have three columns of numbers.)

Seen above is the orbit of an object in the x-y plane.  If 
you look at a plot like this and see something 
obviously non-physical (sharp corners, straight lines, 
etc.) then there's probably something wrong with 
your program.

Once you have a data file like this, you can plot it in 
gnuplot by just typing a command like:

plot �file.dat� with lines 
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Part 1: Introduction to C++ ClassesPart 1: Introduction to C++ Classes

We've dealt a lot with structures now.  Structures are a 
tried-and-true feature of the C programming 
language.

C++ offers an additional construct called a �class�, 
which is like a souped-up structure.  Let's take a look 
at how it's used.
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typedef struct{
double re, im;

} Complex;

double magnitude(Complex z) { 
return sqrt( z.re*z.re + z.im*z.im );

}

void conjugate(Complex *z) {
z->im = -z->im;

}

A Review of Structures:
In C,  we can define structures that pack a lot of related information into 
a single variable.  We can then create functions that operate on our 
newly-defined variable types.
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Classes in C++:
class Complex{
public:
  double re,im;
  double magnitude() const {

return sqrt(re*re+im*im);
}

  void conjugate() {
im = -im;
}

};

int main () {
  Complex c;
  c.re = 1.0;
  c.im = 2.0;

  printf ("Magnitude is %lf\n", c.magnitude() );
  c.conjugate();
  printf ("Im(c) = %lf\n", c.im );
}

Functions (called 
�methods�) can be 

included in the 
definition of a class.

Variables in this class.

An instance of a class 
is called an �object�.

Like structures, classes can contain variables, but they 
can also contain dedicated functions, called 
�methods� that operate on the class's data.

We define new variables of a particular class just as 
we'd define a variable using structs: just type the 
name of the class followed by the variable name.

Each instance of the class is called an �object�.  The 
idea is that objects are sort of �smart variables� that 
are able to do things on their own and interact with 
each other.
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Invoking Methods:
class Complex{
public:
  double re,im;
  double magnitude() const {

return sqrt(re*re+im*im);
}

  void conjugate() {
im = -im;
}

};

int main () {
  Complex c;
  c.re = 1.0;
  c.im = 2.0;

  printf ("Magnitude is %lf\n", c.magnitude() );
  c.conjugate();
  printf ("Im(c) = %lf\n", c.im );
}

Class methods are 
invoked like this.

The methods of a class are invoked in much the same 
way we'd use the elements of a struct.



  

 

  19

Variables in Classes:
class Complex{
public:
  double re,im;
  double magnitude() const {

return sqrt(re*re+im*im);
}

  void conjugate() {
im = -im;
}

};

int main () {
  Complex c;
  c.re = 1.0;
  c.im = 2.0;

  printf ("Magnitude is %lf\n", c.magnitude() );
  c.conjugate();
  printf ("Im(c) = %lf\n", c.im );
}

Class methods 
automatically have 
access to variables 

within the class.

const here means that the 
method will be prevented 
from accidentally altering 

the data in the class.

The methods in a class don't need to use �.� or �->� to 
get to the variables within the class.  They just use 
the variable name.
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Scope of Variables and Methods:
class Complex{
public:
  double re,im;
  double magnitude() const {

return sqrt(re*re+im*im);
}

  void conjugate() {
im = -im;
}

};

int main () {
  Complex c;
  c.re = 1.0;
  c.im = 2.0;

  printf ("Magnitude is %lf\n", c.magnitude() );
  c.conjugate();
  printf ("Im(c) = %lf\n", c.im );
}

Methods and variables within a 
class can either be �public� or 
�private�.  Private components 
can only be accessed by 
methods within the class.  
Default is �private�.

Methods and variable that are �public� can be used 
outside the class (in �main�, for example).  In the 
slide above, everything in the class is set to �public�.

What happens if we make some things private?
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Private Variables and Constructors:
class Complex{
private:
  double _re,_im;
public:
  Complex(double re=0, double im=0){
   _re = re;
   _im = im;
  }
  double magnitude() const {

return sqrt(_re*_re+_im*_im);
}

  void conjugate() {
_im = -_im;
}

};

int main () {
  Complex c(1.0,2.0);
  printf ("Magnitude is %lf\n", c.magnitude() );
}

A �constructor� method 
can optionally be used for 
defining new instances of 
a class.  This is a method 
with the same name as 
the class.

By convention, we often prepend an 
underscore on the names of private 
variables.

In this example, we've made _re and _im �private� 
variables.  This means that parts of our program 
outside the class can't get to these variables.  
They're only available inside the class.

Constructor methods can be arbitrarily complicated.  
We can have the constructor do anything we want to 
initialize our variables.  We might, for example, have 
a histogram class with a constructor that 
automatically initializes to zero all of the bins of a 
new histogram.
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Accessing and Setting Private Variables:
class Complex{
private:
  double _re,_im;
public:
  Complex(double re=0, double im=0){
   _re = re;
   _im = im;
  }
  double re() const { return(_re); }
  double im() const { return(_im); }

  void re( double rval ) { _re = rval; }
  void im( double ival ) { _im = ival; }
};
int main () {
  Complex c(1.0,2.0);
  printf (“Re(c) = %lf\n”, c.re() );
  c.re(3.0);
  printf (“Re(c) = %lf\n”, c.re() );
}

Accessor and setter methods:

Example of function 
overloading in C++.

In the example above, we have a problem if we make 
_re and _im private.  Now we can no longer set them 
directly in �main� or elsewhere.

We need �setter� and �accessor� methods to get and 
set these values for us.

But wait.  We have two methods called �re� and two 
called �im�.  What's up with that?  In C++, you can 
have two (or more) functions with the same name, as 
long as they have a different calling syntax.  In the 
case above, one �re� function takes no arguments 
and returns a double.  The other �re� function returns 
nothing, but takes a double as an argument.

C++ figures out which function to call based on how 
you use it in your program.  This is called �function 
overloading�.
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A �print� Method:
class Complex{
...
public:
  double magnitude () {
   return( sqrt(_re*_re+_im*_im) );
  }
  void print () {
   printf( “%lf+%lfi, mag=%lf\n”, _re, _im,
           magnitude() );
  }
...
};
int main () {
  Complex c(1.0,2.0);
  c.print();
}

1.0+2.0i, mag=2.24

It's often useful to have a �print� method, that knows 
how to print out your variables.



  

 

  24

int main(){

  h1 hist1(100,0.,100.,
           "Uniform,weighted w/ X");
  hist1.labels("X-value","# of entries");

  h1 hist2(150,0.,1000.,"Normal, weights=1");
  hist2.labels("X-value","# of entries");

  for (int i=0; i<10000; i++) {
    double tmp = randu(0.,100.);
    hist1.fill(tmp,tmp); 
    hist2.fill(randn(600.,100.),1.0);
  }

  hist1.errors(true);
  hist1.plot();

}

An Object-Oriented Histogram Library:
The new version of our histogram library supports object-
oriented syntax:

Feel free to use this, or not.
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Until now, we've been concentrating on a programming style called 
�procedural programming�, in which we  pass data from function to 
function as we step through the jobs our program needs to do

In C++ one often follows an object-oriented design model, in which  
classes are designed to encapsulate both data and the operations that 
are used with those data

Object-oriented programming was once the dominant programming 
model, but has recently fallen into some disfavor. At Carnegie-Mellon 
University, for example, object-oriented programming has now been 
entirely eliminated from the introductory CS curriculum.

You won't be required to program in this model, but you should be aware 
of the syntax, just in case you see similar usage in a problem solution.

Object-Oriented Programming:
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Part 2: Searching

We've been creating a lot of arrays lately.  What 
happens when we want to search for a particular 
element in an array?
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We'll discuss two simple approaches to searching for a particular value 
within a collection of data:

1) a linear search
In a linear search, we star at the beginning of an array and move 

down the line of elements looking for matches.

2) a binary search
If we have an ordered list of data (either ascending or descending), 

this method provides a MUCH faster search for a particular value.  
Binary searches are sometimes called �bisection�.

Search Methods:
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Linear Search:

index = -1;
value = 88;
for (i=0, i < N_MAX, i++) {

if (value == A[i]) {
index = i;
break;

}
}

if (index >=0 ) 
printf (“Found at location %d\n”,

           index);
else printf (“value not found\n”);

The value we're looking for.

Loop through 
the array.

A

A linear search just starts at the top of the array and 
works its way down until it finds what it's looking for.
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Binary Search:
With a pre-sorted list, we can use a faster binary search. Start by picking a 
number in the middle of the array, then continue breaking the list in half 
each time:
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Note that this only took three steps.  As we'll see, 
binary searches can be very fast, even for large 
arrays.

Remember that binary searches only work for sorted 
lists, though.
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int binarysearch (int value, int* data, int size){ 
  int low = 0, high = size-1, center;

  while ( low <= high ){

center = (low + high) / 2; 
if (data[center] == value) return center;

if (data[center] < value) 
low = center++;

else 
high = center--;

  } 
  return (-1);
}

A Binary Search Function:

Value to search for.

Array of data to 
search through.

Size of array.

Here's one way to write a simple binary search 
function.  Let's step through how it works.
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int binarysearch (int value, int* data, int size){ 
  int low = 0, high = size-1, center;

  while ( low <= high ){

center = (low + high) / 2; 
if (data[center] == value) return center;

if (data[center] < value) 
low = center++;

else 
high = center--;

  } 
  return (-1);
}

A Binary Search Function:

Pick ~center of current range.

First, pick an index approximately in the middle of the current range:
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int binarysearch (int value, int* data, int size){ 
  int low = 0, high = size-1, center;

  while ( low <= high ){

center = (low + high) / 2; 
if (data[center] == value) return center;

if (data[center] < value) 
low = center++;

else 
high = center--;

  } 
  return (-1);
}

A Binary Search Function:

Too low. Raise lower limit.

Too high. Lower upper limit.

Found it!

Maybe we get lucky, and the number we're looking for will be at the index 
we picked.  If not, look at whether the number that's there is higher or 
lower than the number we're looking for, and adjust the range 
accordingly.
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int binarysearch (int value, int* data, int size){ 
  int low = 0, high = size-1, center;

  while ( low <= high ){

center = (low + high) / 2; 
if (data[center] == value) return center;

if (data[center] < value) 
low = center++;

else 
high = center--;

  } 
  return (-1);
}

A Binary Search Function:

Number not found.

Keep doing this until we either find the number or exhaust all of the 
possible array elements. If we don't find the number anywhere in the 
array, return �-1� to indicate that we've failed.
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Speed of a Linear Search:

Let's assume we have an ordered array of N 
elements and we want to search for the 
location of a number that we know to be in the 
array.  

How much work does this require?

For a linear search we make no distinction 
whether the number is high or low, we always 
start looking through the array from the start.  

On average it takes us N/2 tries to find the 
number.  Thus the work required is 
proportional to N.  In Computer Science 
terms, this is what's called an O(N) algorithm.  

If we double N, we double the work on 
average.

88
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Best-Case: Worst-Case:
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Speed of a Binary Search:
In the worst case the work done by the binary search is proportional to 
the number of times we can divide the array in half, before only one 
element remains.

if  N = 128, we can cut the array in half only 7 times!  
(128, 64, 32, 16, 8, 4, 2, 1   2^7 = 128)

If we double N, then we need only do 8 divisions instead of 7.
A relatively small increase in work.

The number of iterations required of a binary search algorithm is only 
proportional to log

2
(N), where log

2
(N) is the power to which you need to 

raise 2 to get N.
In Computer Science terms, this an O(log

2
N) algorithm.

This is very important when N is large.  In that case, log
2
(N) << N.  For 

example, if N = 4 billion, it would only take up to 32 steps to find any
given number with a binary search.  It could take up to 4 billion steps 
with a linear search.
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Part 3: SortingPart 3: Sorting

So, we see that binary searches are fast, but they 
require pre-sorted data.  How about routines for 
sorting?



  

 

  37

In order to take advantage of the binary search we need sorted data, 
this leads naturally to a discussion of sorting algorithms.

We'll consider two algorithms:

1) The very simple and intuitive Selection Sort 

2) The clever Quicksort algorithm

There are many other sorting algorithms, some optimized for 
particular data set characteristics.  

You may never need to do anything more than choose between a 
slow but simple sort and some kind of optimized sort in your 
programs.  But this is a rich topic to explore if sorting times become 
an important limiting factor in your work.

Sorting Algorithms:
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17 4 11 9 13 3 5

3 4 11 9 13 17 5

3 4 11 9 13 17 5

3 4 5 9 13 17 11

3 4 5 9 13 17 11

3 4 5 9 11 17 13

3 4 5 9 11 13 17

Selection Sort:

...

Scan forward from position (1) 
swap smallest number into (1)

Scan from (2), swap smallest number into (2)

Scan from (3), swap smallest number into (3)

Scan from (N-1),  swap smallest number into 
(N-1)

.

.

.

All sorted.
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const int num=7;
int a[num] = {17, 4, 11, 9, 13, 3, 5};

for (i=0; i<num ; i++) {
for (j=i+1; j<num; j++) 

if (a[j] < a[i]) 
swap (&a[j], &a[i]);

}

...

void swap (int *i, int *j) {
int tmp;
tmp = *i;
*i = *j;
*j = tmp;

}

Implementing a Selection Sort:
As you can see, a selection sort is really easy to write:

For each element starting 
at the beginning...

Search through remaining
elements i+1 to num-1

If we find a smaller element,
swap the two

�swap� function
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The time to go through a single loop is proportional to N (or �O(N)�).
Here we have a loop within a loop, so the time is proportional to N*N.

Computer scientists would say that this is an O(N2) algorithm, making it 
very slow for large values of N.

const int num=7;
int a[num] = {17, 4, 11, 9, 13, 3, 5};

for (i=0; i<num ; i++) {
for (j=i+1; j<num; j++) 

if (a[j] < a[i]) 
swap (&a[j], &a[i]);

}

The Problem with Selection Sorts:
The problem with the selection sort algorithm is its pair of nested loops.
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The Quicksort Algorithm:

8 4 11 9 13 3 5 15

8

1

4 3 5 1 11 9 13 15

A better sorting algorithm is the one called �Quicksort�.    It works like 
this:

1. Start with a value, say 
the first one.

2. Split the list into 
elements less than the 
value and elements 
greater than the value.  

3. Reapply this procedure  to each of  the two �satellite� lists.
4. Repeat until all lists have one element left.
After each step, we're scanning lists of half the original size.
This translates into a huge reduction in the work needed to sort the list.
A Quicksort is a O(Nlog

2
N) algorithm. 

For N=106, compare:  N2 = 1012, Nlog
2
N ~ 2x107 , about 50,000 times 

less.

So, how do we write a program to do a quicksort?
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QSORT(3)                   Linux Programmer's Manual                  QSORT(3)

NAME
       qsort - sorts an array

SYNOPSIS
       #include <stdlib.h>

       void qsort(void *base, size_t nmemb, size_t size,
                  int(*compar)(const void *, const void *));

DESCRIPTION
       The  qsort()  function sorts an array with nmemb elements of size size.
       The base argument points to the start of the array.

       The contents of the array are sorted in ascending order according to  a
       comparison  function  pointed  to  by  compar, which is called with two
       arguments that point to the objects being compared.

       The comparison function must return an integer less than, equal to,  or
       �greater  than  zero  if  the first argument is considered to be respec
       tively less than, equal to, or greater than the second.  If two members
       compare as equal, their order in the sorted array is undefined. ...

man qsort

The �qsort� Function:
The �qsort� function in the standard C library implements a Quicksort:

Fortunately, we don't have to write our own function.  
The �qsort� function is in the standard C library.
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void qsort(void *base, 
           size_t nmemb, 
           size_t size,
           int(*compar)(const void *, const void *));

qsort Syntax:

� void *base is a generic memory location.  It's like a pointer 
without a specific data type.  In this case, it points to the beginning of 
the array we want to sort.
� size_t nmemb is the number of elements in the array.  For now, 
assume size_t is just the same as int.
� size_t size contains the size of each element of the array.  Qsort 
can operate on any array (double, int or some complicated struct), so it 
needs to know how big each element of the array is.
� int (*compar)(const void *, const void *)
 This is a function pointer, pointing to a function that can compare two 
values to see which is �bigger�.  We can write this function any way we 
want, to suit our own definition of �bigger�.

Qsort has a slightly complicated calling syntax.  We'll 
look at some examples of how to use it soon.
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Void * Pointers:

int data[50]

int* int_p = data;

void *void_p = (void *) int_p;

int_p = (int *) void_p;

Here's an example showing how to convert between void * pointers 
and pointers of other types, using typecasts:

integer pointer 
to our array.

void pointer to 
the same array.

Here's how to cast a 
void pointer as an 
integer pointer again.

Since qsort uses void * pointers, we need to know how 
to work with them.  The examples above show how 
to cast other types as void *, and vice versa.
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int compare_int(void *a, void *b) {
  int x = *(int *)a; 
  int y = *(int *)b;
  if (x > y) return 1;
  if (x < y) return -1;
  return 0;
}

int compare_float(void *a, void *b) {
  float x = *(float *)a;
  float y = *(float *)b;
  if (x > y) return 1;
  if (x < y) return -1;
  return 0;
}

Comparison Functions for Qsort:
Qsort comparison functions return �an integer less than, equal to,  or 
greater  than  zero  if  the first argument is considered to be respectively 
less than, equal to, or greater than the second.�

We can write our comparison function any way we 
want.  For example, we might have an array of 
histograms and want to sort them by the number of 
counts they contain.  We could write a comparison 
function to do this.
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int data[50];
float fdata[50];

qsort( (void *)data, 50, sizeof(int), 
compare_int );

qsort( (void *)fdata, 50, sizeof(float), 
compare_float );

Sorting Arrays with qsort:

Finally, here's an example showing how to use qsort to sort arrays:

Here are some real examples of qsort usage.  Even 
though the syntax sounds complicated, it's not so 
bad when you actually start using it.
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Creating a Sort-order List:
If you have an array of big data structures (e.g., histograms), it may 
take a lot of time to actually move them around in memory while 
sorting them.  Usually, we really don't care how the items are 
arranged in memory, we just need to know which comes first, which 
comes second, etc..

In this case, we might just want to create a list of indices, sorted 
appropriately.  The array indices are small (just ints), so it doesn't 
much time to move them arround in memory.

int order[MAX]
some_big_struct data[MAX]

After sorting the indexes, use data[order[i]] to retrieve 
elements in sorted order.
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Part 4: Interpreting Experimental UncertaintiesPart 4: Interpreting Experimental Uncertainties

When we do an experiment and report a result in the 
form �x +- sigma�, what does that really tell us?
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Example: Neutron Decay:

n0 �  p+ + e- + �
e

Left to themselves, neutrons are unstable and decay into protons, 
electrons and neutrinos.  The mean lifetime of a free neutron is 
predicted to be about 886 seconds (about 15 minutes).

What if we do an experiment to measure the lifetime of a free 
neutron, and we come up with a result of 926 +/- 20 seconds.

Is our result consistent with the theoretical prediction?

Note that the theoretical result differs from our result by 2�.
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95%

� ����

5%

Probability of a 2� Deviation:
When we cite a result like �x +/- ��, we're saying that we believe that if our 
experiment were repeated many times, the results would be distributed 
like the graph below.  In particular, we expect that only about 5% of the 
results will be more than 2� from the mean.

In our neutron decay 
example, our measured value 
differed from theory by 2�.  

If theory and experiment were 
both correct, we'd expect to 
see a deviation this large 
about 5% of the time.  So, it 
isn't out of the question  that 
both theory and our 
experiment are correct.

The agreement in this case isn't great, but it doesn't provide any 
compelling reason to throw out the theory.



  

 

If we want to do this kind of comparison a lot, a graph 
like the one above might be useful.  In red, it shows 
the total area between N*sigma and infinity.  In 
green, it shows the area between zero and N*sigma.

Graphs like this can be generated using the �erf� 
function (the �error function�) which is related to the 
integral of the Gaussian function.



  

 

  52

Only when:

� The quantity of interest has been correctly measured.
(no important systematic biases).

� Size of error has been correctly calculated.  
Incorrect errors are disastrous for determining significance of 
experiment.  Recall a 2� deviation happens ~5% of the time.  

But if we underestimate errors by a factor of two, the same result 
implies a 4� deviation.  The probability for such a result is only 
6E-5.  It's very unlikely we'd ever observe this if the theory is correct.  
This is a reminder that experimental results are meaningless without 
uncertainties.

� The form of the experiment's uncertainties are adequately modeled 
by a Gaussian.  
The Central Limit Theorem makes this common, but it's not always 
true. 

When Can We Trust Numerical Probabilities?
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8%

� ����
92%

Deviations that are too Small:
What if our neutron result had been 888 +/- 20 seconds , compared to the 
prediction of 886 seconds?  These only differ by 0.1�.  We'd expect this 
to happen only about 8% of the time.  
When results agree too closely, we need to think about their validity.

� Are we unusually lucky?

� Did we overestimate �?

� Did we look at the 
prediction and cheat on the 
experiment?

The third possibility is something you should really 
think about when looking at published results.  Is this 
result too good to be true?  
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A= �A

�
A

B= �B

�
Β

Errors in Linear Combinations of Variables:

Assume that we measure two values, A and B, and are interested in 
their sum, C = A+B.

If we know the errors in A and B, what's the error in C?

Let's assume A and B fluctuate randomly and independently (we say 
that they're uncorrelated).
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Propagation of Errors:
If we have a function of several variables, f(x,y,z...), we can use 
propagation of errors to find the error in f, given the errors in x, y, z....

Applying this to C(A,B) = A + B, we get:

We say that the uncertainties add in quadrature, meaning that we add 
the squares instead of just adding the numbers directly.

For example, if �
A 
= 3 and �

B
 = 4, we'd have �

C
 = 5, since 52 = 32 + 42.

We
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Asymmetrical Errors:
From propagation of errors, we'd say that the error in f(x) = tan(x) was:

For x = 88 +/- 1 degrees, that would give us �
f
 = 14.3, and we might 

say that our value for f was tan(88) +/- 14.3, or f = 28.6 +/- 14.3.

But:
  
tan(88) ~ 29
tan(89 = 88+1) ~ 57
tan(87 = 88-1) ~ 19

So f(x) = 29 + 29
� 10

   is more appropriate in this case!
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Monte Carlo Estimation of Errors:

x = 88 ± 1
Generate a random 
distribution for each 
element, x, in our function

Then plot the distribution 
f(x), where x is drawn from 
the random sampling. 

It is always possible to combine errors via a Monte Carlo approach.

This can be very useful for complex error propagations. 
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tan(x), where x is distributed according to 88 ± 1

mean

Error bar represents 
minimal 68% 
confidence region

The Monte Carlo technique allows us to determine the actual 
uncertainty distribution on our dependent quantity. This technique is not 
limited to Gaussian uncertainties, but can be applied to any
distribution.

Monte Carlo Estimation of Errors:
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Next Time:

 

This week's Lab:This week's Lab:

�  Using the qsort functionUsing the qsort function
�  Monte Carlo error propagationMonte Carlo error propagation
    

Brooks Ch. 1, Ch. 2 sections 1-2.2

� Fitting
� Chi-squared
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The End

Thanks!


