

 1

Physics 2660
Lecture 7: C � Part 6

Today
� More probability distributions: Binomial, Poisson, ...
 but the world is mostly Normal

� Histograms with weights
� Default parameters and constant specifiers in functions
� More on Structures

 2

Part 1a: The Bernoulli Distribution

Today we'll talk about three new probability
distributions, in addition to the Gaussian (Normal)
distribution and the uniform distribution that we've
already been using.

 3

The Bernoulli Distribution:
� Only two possible outcomes (true
or false, success or failure).
� The probability, p, of one
possible outcome is known.

P(heads) = p

P(tails) = (1-p)

Jacob Bernoulli

The Bernoulli distribution gives the probability of
observing a true result in a single TRUE/FALSE test
� it describes a simple flip of a coin.

p is the probability of success on each test. (the coin
may be lopsided)

It describes single true/false experiments.

Consider a coin toss: TRUE = HEADS FALSE =
TAILS

What is the probability of getting one HEADs-up if you
flip the coin 1 time?

 4

Bernoulli Example: Coin Toss

P(heads) = p
 = 0.5

P(tails) = (1-p)
 = 0.5

Outcome 1: Heads Outcome 2: Tails

 5

Bernoulli Example: Die Roll

Outcome 1: Roll a 6.
Outcome 2: Roll
something else.

P(6) = p
 = 1/6
(about 0.17)

P(tails) = (1-p)
 = 5/6
 (about 0.83)

The outcomes don't both need to have the same
probability, as we see here.

 6

Part 1b: The Binomial DistributionPart 1b: The Binomial Distribution

What if we flip a coin many times?

The binomial distribution gives us a way to calculate
the probability of getting �x� successes in �n� trials.
This is a useful thing in the real world.

 8

Understanding the Binomial Distribution:
� x = number of successes (e.g., how many heads?)
� n = number of trials (e.g., how many tosses?)
� p = probability of success in a single trial.

� P(x;n,p) = Probability of seeing x successes after n trials, given
probability p of success.

Probability of getting x
successes and (n-x)
failures.

Number of possible ways to
arrange the x successes
and (n-x) failures.

You can think of the formula as being made up of two
parts: The second part just calculates the probability
of getting �x� successes and �n-x� failures in �n� trials.
For example, if we were rolling a 6-sided die, the
probability of getting a 1 twice would be (1/6)*(1/6),
and the probability of getting another number three
times would be (5/6)*(5/6)*(5/6). So, the probability
of rolling 1,1,2,3,4 would be (1/6)^2 * (5/6)^3.

But there are lots of ways we could rearrange these
numbers and still have two ones: 1,2,3,4,1;
2,3,4,1,1; 2,1,3,4,1;... etc. The first term above
calculates the number of permutations that would
produce �x� successes and �n-x� failures.

So, if you flip one fair coin the probability of getting one
head is 50%, and the probability of getting zero
heads is 50%. The probability is zero for any other
number of heads, as you'd expect. (The formula for
the Binomial distribution takes care of this, because
any other number ends up producing a factorial of a
negative integer, which isn't defined.)

Again, this is just what we'd expect, intuitively.

Now let's look at this more interesting case. Here we
flip the coin 20 times, and look at the probabilities of
getting various numbers of heads.

 12

Mean and Variance for the Binomial Distribution:
Given the binomial distribution:

We can calculate the mean value (�) of x:

and the variance (�^2) of x:

Note that, although the Binomial distribution formula is
complicated, the mean and average are very simple
expressions.

 13

The Effect of Varying p:

P(
x;

 2
0,

 p
)

x = Number of heads

20 tosses, vary p from 5% to 50%

p = 5%

p = 30%

p = 50%

Very lopsided
coin.

Fair coin.

Notice that for small values of p, the distribution gets
very asymmetrical, and squashed up against the y
axis. For p=50%, though, the distribution looks
almost like the Gaussian (Normal) distributions we're
used to seeing.

 14

Part 1c: The Poisson DistributionPart 1c: The Poisson Distribution

Probabilities from the Binomial distribution are difficult
to calculate when large numbers are involved,
because of the factorials in the equation. This was
much more of a problem before computers were
availalbe.

As we'll see, there are a couple of useful
approximations to the Binomial distribution for which
calculations are much easier.

The first of these is the Poisson distribution.

 15

The Poisson Limit:
An interesting special case of the binomial distribution is
the one in which:

� The number of trials, n, approaches infinity,
� The probability of success, p, approaches zero,
� The mean number of successes, = np� , remains fixed.

As these limits are approached, the binomial distribution can be
approximated by the following (much simpler) expression:

This is called the Poisson Distribution, and it is valid when p is small, n
is large and � is some intermediate value.

There's a rule of thumb that says the Poisson
distribution is a good approximation of the Binomial
distribution if n is at least 20 and p is smaller than or
equal to 0.05, and an excellent approximation if n �
100 and np 10.�

So, even with a modest number of trials and a not-
particularly microscopic value for p, we're already in
a place where the Poisson approximation is good
enough for many purposes.

The values above (n=20,p=0.05) would apply if we
were rolling a 20-sided die. The probablity of rolling,
say, �1� some number of times (�x�) is given by the
graph.

So, if we observed a radioactive source with a Geiger
counter for five minutes, then repeated this
experiment several times, we'd find that the number
of counts we see in each five-minute sample would
be distributed in a Poisson distribution.

 18

Networks and Queues:
Consider a network of phones. There are lots of phones (large n), but it's unlikely that
any particular phone will be in use at a given time (small p):

http://www.engineerguy.com/videos/video-lines.htm

Here's another real-world example where Poisson
statistics are important.

Note that the video also mentions a distribution called
�Erlang-B�. This, and its companion �Erlang-C�,
deals with the probability of observing a given waiting
time when customers are waiting in a queue.

There's also a programming language named after
Erlang:

http://learnyousomeerlang.com/

We saw earlier that the mean and variance of the
Binomial distribution have really simple expressions.
This is even more true of the Poisson distribution.

 20

Implications for Histograms:
Consider the following:

We fill a histogram with
a large number of
entries, n.

The probability, p, that
any given entry will land
in a particular bin is
small.

This implies that we can use Poisson statistics to describe the
variations in the number of counts in a given histogram bin.

If the count in a given bin is m, then the best estimate of the
uncertainty in the bin count is � = sqrt(m).

This is what we saw in last week's lab: When we took
100 histograms, generated identically, and compared
the values in one particular bin we saw that the
standard deviation of the values was just the square
root of the mean.

 21

Histogram with Error Bars:

 23

µ = 3.35

µ = 14.6
µ = 25

Poisson Distribution for � >> 0:

As � increases, the distribution approaches a Gaussian (�normal�) shape.

This is true for the Poisson distribution as well. As the
mean moves away from zero, the Poisson
distribution becomes more symmetrical and takes on
the Gaussian shape.

Note that this is a special case of the Gaussian
distribution where we require that the variance be
equal to the mean. (Remember that for the Poisson
distribution, �^2 = �.)

 24

µ = 3.35

µ = 14.6
µ = 25

How Good is this Approximation?

Gaussian
approximation.

As you can see, even shifting the mean a small way
away from zero is enough to make the Poisson
distribution pretty close to a Gaussian distribution.

 25

The Gaussian Limit of the Binomial Distribution:
As we noticed earlier, the Binomial distribution itself looks like a
Gaussian when the mean is sufficiently far away from zero.

� = np >> 0

DeMoivre

As we noted earlier, calculations involving the Binomial
distribution can be really difficult if you don't have a
computer. Because of the factorials, the Binomial
distribution becomes untractable when you try to
apply it to large populations. For many years early
researchers in probability and statistics looked for a
good approximation to the Binomial distribution that
was easier to calculate. Abraham DeMoivre
eventually identified what we now call the Gaussian
or Normal distribution.

 26

Gaussian Distributions in Monte Carlo Results:
Because of the Gaussian limit of the binomial distribution, we see
Gaussian shapes appear when we look at �coin tossing� experiments like
our Monte Carlo integration examples:

Statistical errors tend to follow Gaussian distributions
for sufficiently large samples. This is an example of
the Central Limit Theorem � a remarkable result that
lies at the core of probability theory.

 27

Binomial Poisson

Gaussian

n � Large, p � Small

n � Large,
np = >> 0�

 >> 0�

Relations between Distributions:

 28

Binomial Poisson

Gaussian

n � Large, p � Small

n � Large,
np = >> 0�

 >> 0�

Picking the Right Distribution:
Need full Binomial description
when there is a good chance
you see events at both limits:
x=0 and x=n.

Can use Poisson limit when you are
likely to observe events at x=0, but
not likely to see events at x>>�
approaching upper limit.

Can use Normal/Gaussian limit when
number of trials is large and observed
data are not likely to land near either
the upper or the lower limits.

 29

Part 2: Optional Function ParametersPart 2: Optional Function Parameters

In the U.S., we have these three-hole wall outlets. But
we can still use two-prong plugs in them. The third
connector is optional.

C++ allows us to do the same sort of thing with
functions. We can have optional arguments that
have default values.

 30

void h1fill(h1 *hist, double x, double wgt=1.0);

Defining Default Parameter Values:

Consider the following prototype statement from �hist.hpp�, one of the
header files associated with our �p2660� library:

As we saw in lab last week, we can call �h1fill� with an optional third
argument (a weighting factor).

This is possible because the function's prototype defines a default
value (�1.0�) for the last parameter. If we don't specify a value for
this parameter when we use the function, the compiler just
assumes that it has the default value.

This is a feature that's only available in C++. It won't work in vanilla
C.

 31

Rules for Default Parameter Values in C++:

� Default values should be specified in the
function's prototype.

� Any number of parameters may have defaults.

� All other parameters after a parameter with
defaults must also have defaults.

 32

void printstuff(int a=0, int b=0, int c=0);

int main(){

 printstuff(); // prints 0 0 0

 printstuff(1); // prints 1 0 0

 printstuff(1,2); // prints 1 2 0

 printstuff(1,2,3); // prints 1 2 3

}

void printstuff (int a, int b, int c){

 printf(“%d %d %d\n”,a,b,c);

}

Default Parameter Example:

Note that we specify the defaults in the prototype, not
the function definition (and not both).

 33

Part 3: More on StructuresPart 3: More on Structures

Finally today, a little note about avoiding a potential
problem when giving functions pointers to structures.

 34

Unintended Changes:

typedef struct{

double re, im;

} Complex;

// Return the magnitude of the sum of z1 and z2:

double magsum(Complex *z1, Complex *z2) {

z1->re += z2->re;

z1->im += z2->im;

return sqrt(z1->re*z1->re + z1->im*z1->im);

}

Consider the following innocuous-looking code:

What happens if we want to use the value of z1 somewhere later in
our program, after calling �magsum�?

The author of the magsum function wasn't thinking about this!

 35

Preventing Unintended Changes with �const�:

typedef struct{

double re, im;

} Complex;

// Return the magnitude of the sum of z1 and z2:

double magsum(const Complex *z1,

 const Complex *z2) {

z1->re += z2->re;

z1->im += z2->im;

return sqrt(z1->re*z1->re + z1->im*z1->im);

}

You can protect yourself from mistakes like this by using �const�:

The compiler will make sure you don't change data you specify as
constant:
g++ test.cpp
test.cpp : In function `magsum':
test.cpp:9: warning: increment of read-only member `re'

 36

Next Time:

This week's Lab:This week's Lab:

� Using the debuggerUsing the debugger
� New library functionsNew library functions

Brooks Ch. 1, Ch. 2 sections 1-2.2

� �Classes� in C++
� Searching and Sorting

 37

The End

Thanks!

