

 1

Physics 2660
Lecture 3: C � Part 2

Today
� Program flow control statements (~25% of C's vocabulary):

� Conditionals: if / else / switch / case
� Loops: for / while / do

break / cont
� Some comments leading into statistics

 2

Reminders:

� Don't forget to follow the weekly reading assignment posted on
the class web page. Aside from this notice, there generally will
not be weekly reminders.

� Preparation for labs:
� Complete the weekly reading or any Prelab assignment
� Review notes from Tuesday lecture

� The next 2-3 weeks are very important! We will finish covering
a large portion of the C language. Everything builds on previous
work. Don't fall behind or it will be very difficult to catch up.

 3

Announcement:

g++ -Wall -o example example.cpp

The -Wall flag will turn on a number of compiler
warnings. It will warn you about the use of undefined
variables, tell you if you've defined some variables but
left them unused, catch syntax errors, etc...

Your programs will now be expected to compile without
warnings.

From now on, you should add a new flag (-Wall) to the
g++ command when you compile your programs:

 4

Part 1: Conditional Statements

YES

No

Up until now, we've mostly dealt with programs that
follow a single path from start to finish. Now we'll
look at ways to control the execution of our
programs.

In this example, the computer follows just one path
through the program. It's a twisty path, but there's
still only one way to get from the top of the program
to the bottom.

 6

�if� Statement Syntax:
A simple �if� statement can be written in two different ways. Here's the
more general way to write one:

if (CONDITION) {
BLOCK of statements

}

Syntax:
if (a > 1) {

printf(“Hello There!\n”);
b = a * 2;
printf(“b is: %d\n”,b);

}

Example:

Alternatively, if you only have one line in your block of statements, you
can omit the curly brackets and write it like this:

if (CONDITION)
statement;

Syntax:
if (a > 1)

printf(“Hello There!\n”);

Example:

Must be true (!=0) or
false (==0).

No semicolon.

With �if� statements, we can make the computer
execute different parts of our code, depending on the
result of a test.

 7

Relational and Logical Operators:
These operators test or combine logical expressions. The answer to
a test is either true (not 0) or false (0). Any non-zero value is
considered true.

! Logical NOT.
Invert a test or
true/false value

!a 1

< Less than a<b 2

> Greater than a>b 2

<= Less or equal a<=b 2

>= Greater or equal a>=b 2

== Equality a==b 3

!= Inequality a!=b 3

&& Logical AND (a==b) && (c==d) 4

|| Logical OR (a<=b) || (c>b) 5

Precedence

Remember:
Use parentheses to
prevent precedence
perplexity.

We saw these operators last week, along with C's
other operators. Note that there are precedence
rules that determine the order in which these
operators will be executed. As we said last week, it's
best not to rely too heavily on the precedence rules,
since this can make your code confusing. To avoid
mistakes, use parentheses to clarify things.

 8

Using Return Values in Tests:
C library functions often return values useful as conditional tests.
For example:

// fopen returns a non-NULL pointer if successful
FILE* inFile;
inFile = fopen("grades.dat","r"); // open grades.dat

if (inFile==NULL) {
 // exit program if file not found
 printf("Error: grades.dat not found!!\n");
 return(1);
}

if (!inFile) {
 printf(“Error...
}

The �if� statement could alternatively be written like this:

NULL is a preprocessor
macro, defined in stdio.h.

 9

Returning Zero for Success:

It's common practice for functions returning a integer status value
(instead of returning data) to return zero for �Success�, and non-zero to
indicate an error. You'll often see code that takes advantage of this
convention when making tests. For example:

if (function(param1,param2)) {
 printf(“Error !!\n”);
 return 1;
}

If �function� returns a non-zero (i.e., �true�) value, it means that
something has gone wrong.

This isn't true for all functions in the Standard C Library. Check
the documentation if you're not sure about a particular function.

 10

Comparing Floating-Point Numbers with �==�:
The == operator compares two numbers and returns �true� if they are
the same. This works fine for integers, but you shouldn't use it for
floating-point numbers. This example shows why:

int main(){
 double a=12345678.;
 double loga2 = log(a*a);
 double b=sqrt(exp(loga2));
 printf("b=%20.10lf a=%20.10lf\n",b,a);
 return(0);
}

b=�eln �a2�=�a2=a

b=12345678.0000000224 a=12345678.0000000000
Output:

Clearly, �b� is not equal to �a� due to the limited precision of the
calculations.

In the purple box, you see that �b� should be equal to
�a�. Each of the long series of mathematical
operations on �a� (square root, log, square) results in
some roundoff error, since we can't keep infinitely
many decimal places. By the time we've done them
all, the result is slightly different from the original
value. This means that it's difficult to compare
floating point numbers. We can't just use the
comparison operator �==�, since the two numbers
aren't, strictly speaking, equal.

 11

Comparing Floating-Point Data with �<� or �>�:

int main(){
 const double SMALL=1e-6;
 double a=12345678.;
 double loga2 = log(a*a);
 double b=sqrt(exp(loga2));

 if (fabs(a-b) < SMALL)
 printf(“a=b\n”);
 else
 printf(“a!=b\n”);
 return(0);
}

b=�eln �a2�=�a2=a

Instead of ==, use inequalities to see if the difference between the
floating-point numbers is less than some threshold (chosen by you).

The fabs() function returns
the absolute value of a
floating-point number. It is
part of the Standard C
Library.

Notice that we've also introduced an �else� statement, after our �if�.
We'll talk about that next.

We can set the value of SMALL to be anything we
want. We should choose it in a way that makes
sense for the problem at hand. Do we care about
differences of one part in a million? One part in a
billion? The programmer gets to decide.

 12

if (CONDITION) {
BLOCK of statements

} else if (CONDITION) {
BLOCK of statements

} else if (CONDITION) {
BLOCK of statements

} else {
BLOCK of statements

}

�if/else if/else� Statements:

Only one of these blocks (the
first one whose CONDITION is
�true�) will be executed. The
others will be ignored.

Sometimes a simple �if� statement isn't enough. You may want to choose
between two or more different blocks of code, based on some test.

if (CONDITION) {
BLOCK of statements

} else {
BLOCK of statements

}

In that case, you can add an �else�
clause to your �if� statement.

For more complicated cases,
you can add multiple �else if�
clauses.

The second block of code will
only be executed when
CONDITION is false.

The else block, if present, will
be executed if none of the
CONDITIONs are met.

 14

Switch Statements:
It's common for programs to
look at a value and use it to
decide which one of many
alternative blocks of code to
execute.
For convenience, C
provides another construct
for this special case: the
switch statement.

switch (EXPRESSION) {
case VALUE1:
 BLOCK of statements
 break;
case VALUE2:
 BLOCK of statements
 break;
case VALUE3:
 BLOCK of statements
 break;
default:
 BLOCK of statements

}

EXPRESSION must
evaluate to an int or
char value. These are int or char too.

break means �jump out of the
switch statement and continue
with the rest of the program�.

If there's a default case, it
matches any value.

1

2

3

We could do this using an �if/else if/else�
statement, but that can get very long and
complicated if we have many alternatives.

To clarify the way �switch� statements work:
the computer jumps to the first �case�
statement that matches the value of �letter�
(in this example), and then continues
executing the program from there. It ignores
any subsequent �case� statements. This is
why the bottom example works.

If none of the �case� statements match, the
program jumps to �default� if it exists, or
skips the rest of the switch statement
altogether if it doesn't.

 16

switch (letter) {
case 'A':
case 'a':
case '1':

printf(“A\n”);
break;

case 'B':
case 'b':
case '2':

printf(“B\n”);
break;

}

if (letter=='A'||letter=='a'||letter=='1'){
printf(“A\n”);

} else if (letter=='B'||letter=='b'||letter='2'){
printf(“B\n”);

}

Switch versus If:

Everything that can be
accomplished with switch can
also be done with a sufficiently
complicated set of if statements.
The two snippets shown here do
the same thing, but notice how
much more readable the switch
statement is.

 17

The ?: Operator:
As a shorter alternative to the regular if statement, C offers the special
operator �?:�. This is a ternary operator, meaning that it takes three
arguments. The syntax is as follows:

CONDITION ? STATEMENT : STATEMENT;

Evaluates to �true�
or �false�. If �true�, do this. If �false�, do this.

(a==b) ? printf(“it's true\n”) : printf(“it's false\n”);

Example:

if (a==b)
printf(“it's true\n”);

else
printf(“it's false\n”);

This is just equivalent to
the if statement shown at
the right:

 18

Assignment versus Comparison:
Be careful not to confuse the = (assignment) operator with the ==
(equality comparison) operator. This is one of the most common C
typos.

int a=0;
int b=1;
if (a=b)

printf(“they are equal\n”);
else

printf(“they are not equal\n”);

int a=0;
int b=0;
if (a=b)

printf(“they are equal\n”);
else

printf(“they are not equal\n”);

Prints: �they
are equal� !

Prints: �they
are not equal� !

The code below produces unexpected results. Why?

The programmer
should have used
�a==b� !

The value returned by the
assignment operation �a=b�
is just the left-hand side of
the assignment (�a�, in this
case) after the operation has
completed (after �a� has
been set equal to �b�).

a=b;
if (a)

if (a=b) is equivalent to

The trick is that operators (like �=�) return values, just
like functions. You could think of a statement like
�a=b� as being equivalent to a function called
�equals� that takes two arguments (�a� and �b�), sets
the value of �a� to the value of �b�, and returns the
value of �a�.

We'll talk about how to do things like this when we
discuss pointers.

 19

Using the Return Value of an Assignment:

FILE* inFile;
if (!inFile = fopen("grades.dat","r")) {
 // exit program if file not found
 printf("Error: grades.dat not found!!\n");
 return(1);
}

Sometimes you may encounter code that intentionally uses an
assignment statement as an if condition. See the following:

If fopen fails, inFile will be NULL, a �false� value, and its logical inverse
(!inFile) will be �true�.

FILE* inFile;
inFile = fopen("grades.dat","r");
if (!inFile) {

It's better to avoid constructs like the one
above, though. Instead, use something
equivalent but more transparent, like this:

Note that �g++ -Wall�
will warn you when it
sees you using = in
a place where you
might want to use
==.

 20

Boolean Data in C++:

In C++, there's a special data type that you can use for true/false data:
�bool�.

float x;
bool validData = true;

x = 3.14;

validData = (x > 1.0 && x < 10.0);

if (validData)
printf(“Valid data\n”);

else
printf(“Invalid data\n”);

true & false are
reserved words
in C++.

In C, we could do exactly the same thing using �int� instead of �bool�.
The bool type mainly serves to improve readabilty and clarity.

 21

Part 2: Loops

Now we get to the thing that computers are best at:
doing the same thing over and over, many times.
This is what computers were invented for.

 22

Types of Loops:

� Count-controlled Loops:
 We use these when we know, beforehand, how many times we
want to repeat a series of tasks.

� Condition-controlled Loops:
These are used when we don't know how many repititions will be

needed, but we know that we want to stop when some well-defined
thing happens.

We use loops when we want to repeat a series of tasks several times. In
most programming languages, there are two different types of control
structures used to implement loops. Which one you use will depend on
how your program knows that it's time to stop repeating:

 23

The for Loop:

for (initialize counter ; test condition ; counter update) {
 statement block;
}

General form of a �for� loop:

A �for� loop is a count-controlled loop. Its has the form shown below.

int i;
for (i = 0 ; i < 10 ; i++) {
 printf(“loop number %d\n”, i);
}

Loop number 0
Loop number 1
Loop number 2
Loop number 3
Loop number 4
Loop number 5
Loop number 6
Loop number 7
Loop number 8
Loop number 9

Example: Output:

The loop continues until the test condition is no longer
true. See the following graphical representation.

 24

i = 0;

i++;

i < 10 ?

printf(“loop number %d\n”,i);

YES
NO

Continue...

How a for Loop Works:

If never true, no loops

Initialize:

Test:

Increment:

for (i = 0 ; i < 10 ; i++)
The for statement:

 25

for (initialize counter ; test condition ; counter update) {
 statement block;
}

Controlling for Loop Behavior:

The for statement is very flexible because:
� Any valid C expression can be used for initialization or update, and
� Any valid condition can be used for the test condition.

Here are some creative uses of the for statement:
for (i=0 ; i < n ; i++) {

for (i=0 ; i < m ; i+=2) {

for (i=100 ; i > 0 ; i--) {

for (i=0,j=0; i<1000; i++,j=exp(i))

Loop n times from i=0 to i=n-1

Loop ~m/2 times i = 0, 2 , 4,...

Loop 100 times, decrementing i

Compound statements are also allowed. (This
may be a little too creative.)

 27

Good for Loop Usage:
int i;
for (i = 0 ; i < 10 ; i+=2) {
 printf(“loop number %d\n”, i);
}

int i;
for (i = 0 ; i < 20 ; i++) {
 float a = i*0.5;
 printf(“counter= %f\n”, a);
}

int const NLOOPS=10;
int i;
for (i = 0 ; i < NLOOPS ; i++) {
 printf(“loop number %d\n”, i);
}
printf(“completed %d loops”,
NLOOPS);

Do all iterator math with
the loop updater.

Use integer iterators to
avoid rounding errors
with floats.

Use constants to define
fixed NLOOPS,
especially if you need to
use the same value
throughout your code.

 28

Taking advantage of scoping rules in C++:

// define a variable i for use in a loop
for (int i = 0 ; i < 10 ; i++) {
 printf(“loop number %d\n”, i);
}

// i is no longer defined here

// define a new variable i for use in this loop
for (int i = 0 ; i < 1000 ; i+=100) {
 printf(“i = %d\n”, i);
}

C++ allows us to limit the scope of variables. Variables can be defined so
that they exist only within a loop. For example:

This is a safer way to handle iterator variables, because prevents
misuse of variables outside of their loops.

Notice that the statements �int i� in each �for� statement
define a new variable, �i�, that only exists for the
duration of that particular loop.

 29

Using break to Exit a Loop:

#include <stdio.h>
int main ()
{
 int n;
 for (n=10; n>0; n--) {
 printf(“%d, ”, n);
 if (n==3) {
 printf("\ncountdown aborted!\n");
 break;
 }
 }
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3,
countdown aborted!

Output:

We can use a break statement to prematurely exit a loop:

Imagine you're looking through a big stack of books,
trying to find one with a particular title. You start from
the top and look at the books one at a time until you
find the one you want. Then you stop. You don't
keep looking through the rest of the stack.

We can do the same thing in a �for� loop by using a
�break� statement. When we find the thing we're
looking for, we can immediately stop looping and go
on with the rest of the program.

 30

Using continue to Skip Iterations:

#include <stdio.h>
int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5 || n==6) continue;
 printf(“%d, ”, n);
 }
 printf("G0!\n");
 return 0;
}

10, 9, 8, 7, 4, 3, 2, 1, GO!

You can use a continue statement to skip the rest of the current loop,
and go directly to the next iteration:

Output:

Note missing
numbers

Try to minimize the use of break/continue in all but the most obvious
cases. Program flow that jumps around is more difficult to understand.
This can sometimes be avoided with conditional loops.

Now imagine that you have a stack of books, some of
which are paperback and some of which are
hardback. You're looking for a particular title, and
you remember that it's a hardback book. You'll go
through the stack quickly, discarding the paperbacks
without even looking at them and going on down the
stack.

We can use a �continue� statement to do this kind of
thing in a �for� loop. The �continue� causes the
current iteration to stop, and the execution goes
immediately back up to the top of the loop and starts
the next iteration.

 31

Conditional Loops:

Sometimes, you can't tell ahead of time how many times a loop must
run. For Example:

� �Do something until a convergence criterion is satisfied.�
� �Do something until the data are exhausted.�

This is where conditional loops are useful.

Conditional loops come in two flavors:

� Pre-test Loops :
 Check at the start of the loop to see if should be executed (again).

� Post-test Loops :
 Check at the end of the loop to see if it is executed again.

- These loops may possibly never be executed.

- These are ALWAYS executed at least once.

 32

Pre-test Loop:

while (condition) {
BLOCK of statements

}

cash = get_paid();
while (cash > 0) {

error = spend_money_on_snacks(cash,0.75);
if (!error) cash = cash – 0.75;
else break;

}

The while loop is a pre-test loop:
Syntax:

Example:

Do we have cash?

Use non-zero
status code to flag
error on snack
purchase.

On successful
snack acquisition,
debit cash.

We have too little
cash to continue.
Break loop here

While loops continue until their �condition� is no longer
true. In the example above, the loop stops when
cash is >= 0.

Note that if the condition is not true initially (for
example, if �cash� is zero before we start the loop),
then the statements in the loop will never be
executed (not even once).

 33

Post-test Loop:

do {
BLOCK of statements

} while (CONDITION);

do {
goto_class();
do_homework();

} while (!semester_over());

The do loop is a post-test loop:
Syntax:

Example:
Here we call two functions with no return values.

When the semester_over() function returns a TRUE value we
can break the loop.

This loop will always be
executed at least once.

With a �do� loop, the statements within the loop are
always executed at least once (the first time through
the loop). The loop then continues to execute until
the �condition� is false.

 34

Nested Loops:
It is very common to nest loops in programs, by placing one loop inside
of another:

const int NUMDAYS = 7;
const int NUMWEEKS = 14;
int day, week;
for (week=0 ; week<NUMWEEKS ; week++)
{
gotoMovie(); // Done 14 times.
for (day=0 ; day<NUMDAYS ; day++) {
eat(); // Done 98 times
study();
sleep();

}
}

Often limits on loops are set with constants or #define
statements that are prominently visible at the top of
the file. This allows you to easily change the
behavior of your program.

Also note how we use indentation to clearly mark code
blocks. This is very important, even for simple
programs, and it will make your code much easier to
debug and help you avoid mistakes while writing.

 35

Part 3: The Scope of Variables

We mentioned earlier that C++ lets you define
variables that only exist within a particular loop. C
lets you define variables in a couple of different
�scopes�, or parts of the program in which the
variable is visible.

 36

Global Scope:
All variables in C/C++ exist within a certain scope or context.
Scope refers to where variables may be accessed in your program.
Variables defined outside of function blocks are said to be in Global
Scope. They may be accessed by any function below their
definition statement.

int globalInt;
void printInt();

int main (){
globalInt = 1;
printInt();
return 0;

}

void printInt() {
 printf(“%d\n”, globalInt);
}

globalInt is visible in all code
listed after its definition.

The global variable globalInt
is defined outside of �main�
or any other function.

 37

int number;
void printInt();
void printFloat();

int main (){
number = 1;
printInt();
printFloat();
return 0;

}

void printInt() {
 printf(“%d\n”, number);
}

void printFloat() {
float number = 5.0;
printf(“%f\n”, number);

}

Local versus Global Scope:

A global integer variable
named �number� is defined
here.

A local variable (defined within
a function) with the same name
will override the global
definition, but only within that
function. The global variable is
unaffected.

In the scope of this function,
�number� is a float and has
no relation to the global
variable.

Only one variable of a given name can be declared in
each scope:

int main(){
int a;
float a; // not allowed!

}

 38

Using the Smallest Scope:

In general you should avoid using global
variables.

If many functions can change a value it's very
difficult to keep track of what's going on. It's
much better to pass data to functions explicitly
rather than to define data globally.

For clearer code, always restrict variables to the
smallest possible scope!

and computers are very good at the kinds of
calculations these disciplines require. Statistical
calculations often involve repeating the same
operations many times. As we saw in the section on
loops, this becomes trivial when computers are
available.

(The pictures are Jacob Bernoulli, Abraham DeMoivre,
and Joseph Fourier.)

When we're in school, we tend to think of science as the
process shown at the top of this picture: Taking a
generalization (like the Law of Gravitation), plugging in
some numbers, doing some algebra and maybe applying
some other generalizations (like F=ma) to arrive at a
specific answer to a specific question. This process of
deriving a specific answer from a general principle is called
�deductive reasoning�.

In reality, there's a second, more important and more difficult,
component to science, called �inductive reasoning�. This is
the process of taking some specific data, acquired through
experiments, and producing a generalization (a hypothesis)
that is consistent with those data. This is how science
progresses.

Probability and statistics provide us with powerful tools for
analyzing our data, and for testing the quality of our
hypotheses.

 41

�Strong Inference�:

Devise alternative hypotheses.

Devise a crucial experiment (or several of them), with
alternative possible outcomes, each of which will, as
nearly as possible, exclude one or more of the
hypotheses.

Carry out the experiment so as to get a clean result.

Recycle the procedure, making subhypotheses or
sequential hypotheses to refine the possibilities that
remain, and so on.

In 1964, John R. Platt wrote about a form of the Scientific Method that he
called �Strong Inference�. It goes as follows:

Platt's article is here:
http://pages.cs.wisc.edu/~markhill/science64_strong_inference.pdf

When we do an experiment, we're always at least at two removes from
the thing we're trying to see. We assume that there's some
underlying truth that has a single, well-defined value (like the speed of
light in a vacuum), but when we measure it, we see a range of
different values. This is partly because of imperfections in our
instruments, but there may also be physical limits to the precision of
our measurements.

If we could make infinitely many measurements, we we see that the
values we observe fall into some distribution like the middle picture.
This curve gives the probability that any given observation will have a
particular value.

Using statistics, we can take our finite set of observations and use them
to make educated guesses about the shape of this underlying
probability distribution. But that's as close to the �truth� as we can get.
 From there, we just have to assume that the mean of the probability
distribution is equal to the �true� value we're trying to measure.

 43

Systematic vs. Random Uncertainties:
We can group the uncertainties in our data into two categories:

Systematic Uncertainties:
These are the result of things that systematically shift the values we
measure by a constant amount (or factor). Once these uncertainties
are identified, it's usually possible to correct for them.
For example, maybe the meter stick you used was really only 0.99
meters long. We can correct our data to account for this.

Random Uncertainties:
These are the result of things that shift each measurement by a
different amount, at random. For example, electronic noise may
introduce random uncertainties into your data.

Since each measurement is shifted by a different amount, correcting
for this sort of uncertainty is not so straightforward. Usually, to extract
the underlying �truth� from our data we need to use the mathematics of
statistics.

These are the things that define the shape of that
underlying probability distribution. We'll concentrate
on the random uncertainties.

Consider a parameter we wish to measure
(i.e. the acceleration due to gravity).

Specifically, if we normalize the area under the curve
to 1, this distribution shows the probability that a
given measurement will have a value between x and
x+dx.

In fact the Central Limit Theorem tells us that a
sufficiently large linear combination of random
variables always approaches a Normal distribution.

This was a source of amazement to early statisticians,
who saw this curve popping up everywhere:
astronomical data, actuarial tables, agricultural data.
The Central Limit Theorem explained why this was
so.

Our certainty in the true value of the underlying
quantity is limited by what we know about how the
true value gives rise to the parent probability
distribution.

As we'll see, the �variance� is defined to be just the
square of the standard deviation.

We can use the data in our Sample Distribution to
make defensible statements about the Parent
Distribution, such as �We are 95% certain that the
mean of the Parent Distribution lies between 8.1 and
11.2�.

Notice that we're not even talking about the underlying
�truth� any more. All we can really talk about are
estimates of the parameters of the underlying Parent
Distribution, based on the measurements in our
Sample Distribution. Does the mean of Parent
Distribution equal the True Value? Is there really a
True Value, separate from this mean? Does it
matter?

As you can see, there's a ~68% probability that any
given measurement will yield a value that lies within
+/- sigma of the mean. There's an ~95% probability
that the value will lie within +/- 2 sigma.

 52

Next Time:
� More on passing data to functions
� Solving problems with the help of random numbers

This week's Lab:This week's Lab:

PreLab Preparation: review the description of PreLab Preparation: review the description of
generating random numbers in this week's reading generating random numbers in this week's reading
before the lab.before the lab.

 53

The End

Thanks!

