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Physics 2660
Lecture 3: C � Part 2

Today
� Program flow control statements (~25% of C's vocabulary):

� Conditionals: if  / else / switch / case
� Loops:  for / while / do

break / cont
� Some comments leading into statistics
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Reminders:

� Don't forget to follow the weekly reading assignment posted on 
the class web page.  Aside from this notice, there generally will 
not be weekly reminders.

� Preparation for labs:
� Complete the weekly reading or any Prelab assignment
� Review notes from Tuesday lecture

� The next 2-3 weeks are very important!  We will finish covering 
a large portion of the C language.  Everything builds on previous 
work.  Don't fall behind or it will be very difficult to catch up.
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Announcement:

g++ -Wall -o example example.cpp

The -Wall flag will turn on a number of compiler 
warnings.   It will warn you about  the use of undefined 
variables, tell you if you've defined some variables but 
left them unused, catch syntax errors, etc...

Your programs will now be expected to compile without 
warnings.

From now on, you should add a new flag (-Wall) to the 
g++ command when you compile your programs:
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Part 1: Conditional Statements

YES

No

Up until now, we've mostly dealt with programs that 
follow a single path from start to finish.  Now we'll 
look at ways to control the execution of our 
programs.



  

 

In this example, the computer follows just one path 
through the program.  It's a twisty path, but there's 
still only one way to get from the top of the program 
to the bottom.
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�if� Statement Syntax:
A simple �if� statement can be written in two different ways.  Here's the 
more general way to write one:

if (CONDITION) {
BLOCK of statements

} 

Syntax:
if (a > 1) {

printf(“Hello There!\n”);
b = a * 2;
printf(“b is: %d\n”,b);

}

Example:

Alternatively, if you only have one line in your block of statements, you 
can omit the curly brackets and write it like this:

if (CONDITION)
statement;

Syntax:
if (a > 1)

printf(“Hello There!\n”);

Example:

Must be true (!=0) or 
false (==0).

No semicolon.

With �if� statements, we can make the computer 
execute different parts of our code, depending on the 
result of a test.
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Relational and Logical Operators:
These operators test or combine logical expressions.  The answer to 
a test is either true (not 0) or false (0).  Any non-zero value is 
considered true.

! Logical NOT.  
Invert a test or 
true/false value

!a 1

< Less than a<b 2

> Greater than a>b 2

<= Less or equal a<=b 2

>= Greater or equal a>=b 2

== Equality a==b 3

!= Inequality a!=b 3

&& Logical AND (a==b) && (c==d) 4

|| Logical OR (a<=b) || (c>b) 5

Precedence

Remember:
Use parentheses to 
prevent precedence 
perplexity.

We saw these operators last week, along with C's 
other operators.  Note that there are precedence 
rules that determine the order in which these 
operators will be executed.  As we said last week, it's 
best not to rely too heavily on the precedence rules, 
since this can make your code confusing.  To avoid 
mistakes, use parentheses to clarify things.
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Using Return Values in Tests:
C library functions often return values useful as conditional tests.
For example:

// fopen returns a non-NULL pointer if successful
FILE* inFile;  
inFile = fopen("grades.dat","r"); // open grades.dat

if (inFile==NULL) {  
  // exit program if file not found
  printf("Error: grades.dat not found!!\n");
  return(1);
}

if (!inFile) {
  printf(“Error...
}

The �if� statement could alternatively be written like this:

NULL is a preprocessor 
macro, defined in stdio.h.
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Returning Zero for Success:

It's common practice for functions returning a integer status value 
(instead of returning data) to return zero for �Success�, and non-zero to 
indicate an error.  You'll often see code that takes advantage of this 
convention when making tests.  For example:

if ( function(param1,param2) ) { 
  printf(“Error !!\n”);
  return 1;
}

If �function� returns a non-zero (i.e., �true�) value, it means that 
something has gone wrong.

This isn't true for all functions in the Standard C Library.  Check 
the documentation if you're not sure about a particular function.
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Comparing Floating-Point Numbers with �==�:
The == operator compares two numbers and returns �true� if they are 
the same.  This works fine for integers, but you shouldn't use it for 
floating-point numbers.  This example shows why:

int main(){
  double a=12345678.;
  double loga2 = log(a*a);
  double b=sqrt(exp(loga2));
  printf("b=%20.10lf    a=%20.10lf\n",b,a);
  return(0);
}

b=�eln �a2�=�a2=a

b=12345678.0000000224    a=12345678.0000000000
Output:

Clearly, �b� is not equal to �a� due to the limited precision of the 
calculations.

In the purple box, you see that �b� should be equal to 
�a�.  Each of  the long series of mathematical 
operations on �a� (square root, log, square) results in 
some roundoff error, since we can't keep infinitely 
many decimal places.  By the time we've done them 
all, the result is slightly different from the original 
value.  This means that it's difficult to compare 
floating point numbers.  We can't just use the 
comparison operator �==�, since the two numbers 
aren't, strictly speaking, equal.



  

 

  11

Comparing Floating-Point Data with �<� or �>�:

int main(){
  const double SMALL=1e-6;
  double a=12345678.;
  double loga2 = log(a*a);
  double b=sqrt(exp(loga2));

  if (fabs(a-b) < SMALL)
    printf(“a=b\n”);
  else
    printf(“a!=b\n”);
  return(0);
}

b=�eln �a2�=�a2=a

Instead of ==, use inequalities to see if the difference between the 
floating-point numbers is less than some threshold (chosen by you).

The fabs() function returns 
the absolute value of a 
floating-point number.  It is 
part of the Standard C 
Library.

Notice that we've also introduced an �else� statement, after our �if�.  
We'll talk about that next.

We can set the value of SMALL to be anything we 
want.  We should choose it in a way that makes 
sense for the problem at hand.  Do we care about 
differences of one part in a million?  One part in a 
billion?  The programmer gets to decide.
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if (CONDITION) {
BLOCK of statements

} else if (CONDITION) {
BLOCK of statements

} else if (CONDITION) {
BLOCK of statements

} else {
BLOCK of statements

} 

�if/else if/else� Statements:

Only one of these blocks (the 
first one whose CONDITION is 
�true�) will be executed.  The 
others will be ignored.

Sometimes a simple �if� statement isn't enough.  You may want to choose 
between two or more different blocks of code, based on some test.  

if (CONDITION) {
BLOCK of statements

} else {
BLOCK of statements

} 

In that case, you can add an �else� 
clause to your �if� statement.  

For more complicated cases, 
you can add multiple �else if� 
clauses.

The second block of code will 
only be executed when 
CONDITION is false.

The else block, if present, will 
be executed if none of the 
CONDITIONs are met.
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Switch Statements:
It's common for programs to 
look at a value and use it to 
decide which one of many 
alternative blocks of code to 
execute.   
For convenience, C 
provides another construct 
for this special case: the 
switch statement. 

switch (EXPRESSION) {
case VALUE1:
  BLOCK of statements
  break;
case VALUE2:
  BLOCK of statements
  break;
case VALUE3:
  BLOCK of statements
  break;
default:
  BLOCK of statements

} 

EXPRESSION must 
evaluate to an int or 
char value. These are int or char too.

break means �jump out of the 
switch statement and continue 
with the rest of the program�.

If there's a default case, it 
matches any value.

1

2

3

We could do this using an �if/else if/else� 
statement, but that can get very long and 
complicated if we have many alternatives. 



  

 

 

To clarify the way �switch� statements work: 
the computer jumps to the first �case� 
statement that matches the value of �letter� 
(in this example), and then continues 
executing the program from there.  It ignores 
any subsequent �case� statements.  This is 
why the bottom example works.

If none of the �case� statements match, the 
program jumps to �default� if it exists, or 
skips the rest of the switch statement 
altogether if it doesn't. 
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switch (letter) {
case 'A':
case 'a':
case '1':

printf(“A\n”);
break;

case 'B':
case 'b':
case '2':

printf(“B\n”);
break;

}

if (letter=='A'||letter=='a'||letter=='1'){
printf(“A\n”);

} else if (letter=='B'||letter=='b'||letter='2'){
printf(“B\n”);

}

Switch versus If:

Everything that can be 
accomplished with switch can 
also be done with a sufficiently 
complicated set of if statements.  
The two snippets shown here do 
the same thing, but notice how 
much more readable the switch 
statement is.
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The ?: Operator:
As a shorter alternative to the regular if statement, C offers the special 
operator �?:�.  This is a ternary operator, meaning that it takes three 
arguments.  The syntax is as follows:

CONDITION ? STATEMENT : STATEMENT;

Evaluates to �true� 
or �false�. If �true�, do this. If �false�, do this.

(a==b) ? printf(“it's true\n”) : printf(“it's false\n”);

Example:

if (a==b) 
printf(“it's true\n”);

else 
printf(“it's false\n”);

This is just equivalent to 
the if statement shown at 
the right:
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Assignment versus Comparison:
Be careful not to confuse the = (assignment) operator with the == 
(equality comparison) operator.  This is one of the most common C 
typos.

int a=0;
int b=1;
if (a=b) 

printf(“they are equal\n”);
else 

printf(“they are not equal\n”);

int a=0;
int b=0;
if (a=b) 

printf(“they are equal\n”);
else 

printf(“they are not equal\n”);

Prints: �they 
are equal� !

Prints: �they 
are not equal� !

The code below produces unexpected results.  Why?

The programmer 
should have used 
�a==b� !

The value returned by the 
assignment operation �a=b� 
is just the left-hand side of 
the assignment (�a�, in this 
case) after the operation has 
completed (after �a� has 
been set equal to �b�).

a=b;
if (a)

if (a=b) is equivalent to

The trick is that operators (like �=�) return values, just 
like functions.  You could think of a statement like 
�a=b� as being equivalent to a function called 
�equals� that takes two arguments (�a� and �b�), sets 
the value of �a� to the value of �b�, and returns the 
value of �a�.

We'll talk about how to do things like this when we 
discuss pointers.
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Using the Return Value of an Assignment:

FILE* inFile;  
if ( !inFile = fopen("grades.dat","r") ) {  
  // exit program if file not found
  printf("Error: grades.dat not found!!\n");
  return(1);
}

Sometimes you may encounter code that intentionally uses an 
assignment statement as an if condition.  See the following:

If fopen fails, inFile will be NULL, a �false� value, and its logical inverse 
(!inFile) will be �true�.

FILE* inFile;
inFile = fopen("grades.dat","r"); 
if ( !inFile ) {  

It's better to avoid constructs like the one 
above, though.  Instead, use something 
equivalent but more transparent, like this:

Note that �g++ -Wall� 
will warn you when it 
sees you using = in 
a place where you 
might want to use 
==.
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Boolean Data in C++:

In C++, there's a special data type that you can use for true/false data: 
�bool�.

float x;
bool validData = true;  

x = 3.14;

validData = ( x > 1.0 && x < 10.0 );

if ( validData )
printf(“Valid data\n”);

else
printf(“Invalid data\n”);

true & false are 
reserved words 
in C++.

In C, we could do exactly the same thing using �int� instead of �bool�.  
The bool type mainly serves to improve readabilty and clarity.  
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Part 2: Loops

Now we get to the thing that computers are best at: 
doing the same thing over and over, many times.  
This is what computers were invented for.
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Types of Loops:

� Count-controlled Loops:
    We use these when we know, beforehand, how many times we 
want to repeat a series of tasks.

� Condition-controlled Loops:
These are used when we don't know how many repititions will be 

needed, but we know that we want to stop when some well-defined 
thing happens.

We use loops when we want to repeat a series of tasks several times.  In 
most programming languages, there are two different types of control 
structures used to implement loops.  Which one you use will depend on 
how your program knows that it's time to stop repeating:
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The for Loop:

for ( initialize counter ; test condition ; counter update ) {
  statement block;
}

General form of a �for� loop:

A �for� loop is a count-controlled loop.  Its has the form shown below.

int i;
for (i = 0 ; i < 10 ; i++) {
  printf(“loop number %d\n”, i);
}

Loop number 0
Loop number 1
Loop number 2
Loop number 3
Loop number 4
Loop number 5
Loop number 6
Loop number 7
Loop number 8
Loop number 9

Example: Output:

The loop continues until the test condition is no longer 
true.  See the following graphical representation.
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i = 0;

i++;

i < 10 ?

printf(“loop number %d\n”,i);

YES
NO

Continue...

How a for Loop Works:

If never true, no loops

Initialize:

Test:

Increment:

for (i = 0 ; i < 10 ; i++)
The for statement:
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for ( initialize counter ; test condition ; counter update ) {
  statement block;
}

Controlling for Loop Behavior:

The for statement is very flexible because:
� Any valid C expression can be used for initialization or update, and
� Any valid condition can be used for the test condition.

Here are some creative uses of the for statement:
for (i=0 ; i < n ; i++) {

for (i=0 ; i < m ; i+=2) {

for (i=100 ; i > 0 ; i--) {

for (i=0,j=0;  i<1000;  i++,j=exp(i))

Loop n times from i=0 to i=n-1

Loop ~m/2 times i = 0, 2 , 4,...

Loop 100 times, decrementing i

Compound statements are also allowed.  (This 
may be a little too creative.)



  

 



  

 

  27

Good for Loop Usage:
int i;
for (i = 0 ; i < 10 ; i+=2) {
  printf(“loop number %d\n”, i);
}

int i;
for (i = 0 ; i < 20 ; i++) {
  float a = i*0.5;
  printf(“counter=  %f\n”, a);
}

int const NLOOPS=10;
int i;
for (i = 0 ; i < NLOOPS ; i++) {
  printf(“loop number %d\n”, i);
}
printf(“completed %d loops”, 
NLOOPS);

Do all iterator math with 
the loop updater.

Use integer iterators to 
avoid rounding errors 
with floats.

Use constants to define 
fixed NLOOPS, 
especially if you need to 
use the same value 
throughout your code.
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Taking advantage of scoping rules in C++:

// define a variable i for use in a loop
for (int i = 0 ; i < 10 ; i++) {
  printf(“loop number %d\n”, i);
}

// i is no longer defined here

// define a new variable i for use in this loop
for (int i = 0 ; i < 1000 ; i+=100) {
  printf(“i = %d\n”, i);
}

C++ allows us to limit the scope of variables. Variables can be defined so 
that they exist only within a loop.  For example:

This is a safer way to handle iterator variables, because prevents 
misuse of variables outside of their loops.

Notice that the statements �int i� in each �for� statement 
define a new variable, �i�, that only exists for the 
duration of that particular loop.
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Using break to Exit a Loop:

#include <stdio.h>
int main ()
{
  int n;
  for (n=10; n>0; n--) {
    printf(“%d, ”, n);
    if (n==3) {
      printf("\ncountdown aborted!\n");
      break;
    }
  }
  return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 
countdown aborted!

Output:

We can use a break statement to prematurely exit a loop:

Imagine you're looking through a big stack of books, 
trying to find one with a particular title.  You start from 
the top and look at the books one at a time until you 
find the one you want.  Then you stop.  You don't 
keep looking through the rest of the stack.

We can do the same thing in a �for� loop by using a 
�break� statement.  When we find the thing we're 
looking for, we can immediately stop looping and go 
on with the rest of the program.



  

 

  30

Using continue to Skip Iterations:

#include <stdio.h>
int main ()
{
  for (int n=10; n>0; n--) {
    if (n==5 || n==6) continue;
    printf(“%d, ”, n);
  }
  printf("G0!\n");
  return 0;
}

10, 9, 8, 7, 4, 3, 2, 1, GO!

You can use a continue statement to skip the rest of the current loop, 
and go directly to the next iteration:

Output:

Note missing 
numbers

Try to minimize the use of break/continue in all but the most obvious 
cases. Program flow that jumps around is more difficult to understand. 
This can sometimes be avoided with conditional loops.

Now imagine that you have a stack of books, some of 
which are paperback and some of which are 
hardback.  You're looking for a particular title, and 
you remember that it's a hardback book.  You'll go 
through the stack quickly, discarding the paperbacks 
without even looking at them and going on down the 
stack.

We can use a �continue� statement to do this kind of 
thing in a �for� loop.  The �continue� causes the 
current iteration to stop, and the execution goes 
immediately back up to the top of the loop and starts 
the next iteration.
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Conditional Loops:

Sometimes, you can't tell ahead of time how many times a loop must 
run.  For Example:

� �Do something until a convergence criterion is satisfied.� 
� �Do something until the data are exhausted.�

This is where conditional loops are useful.

Conditional loops come in two flavors:

� Pre-test Loops : 
  Check at the start of the loop to see if should be executed (again).

� Post-test Loops : 
  Check at the end of the loop to see if it is executed again.

- These loops may possibly never be executed.

- These are ALWAYS executed at least once.
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Pre-test Loop:

while (condition) {
BLOCK of statements

}

cash = get_paid();
while (cash > 0) {

error = spend_money_on_snacks(cash,0.75);
if (!error) cash = cash – 0.75;
else break;

}

The while loop is a pre-test loop:
Syntax:

Example:

Do we have cash?

Use non-zero 
status code to flag 
error on snack 
purchase.

On successful 
snack acquisition,
debit cash.

We have too little 
cash to continue.  
Break loop here

While loops continue until their �condition� is no longer 
true.  In the example above, the loop stops when 
cash is >= 0.

Note that if the condition is not true initially (for 
example, if �cash� is zero before we start the loop), 
then the statements in the loop will never be 
executed (not even once).
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Post-test Loop:

do {
BLOCK of statements

} while (CONDITION); 

do {
goto_class();
do_homework();

} while ( !semester_over() );

The do loop is a post-test loop:
Syntax:

Example:
Here we call two functions with no return values.

When the semester_over() function returns a TRUE value we 
can break the loop.

This loop will always be 
executed at least once.

With a �do� loop, the statements within the loop are 
always executed at least once (the first time through 
the loop).  The loop then continues to execute until 
the �condition� is false.
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Nested Loops:
It is very common to nest loops in programs, by placing one loop inside 
of another:

const int NUMDAYS = 7;
const int NUMWEEKS = 14;
int day, week;
for (week=0 ; week<NUMWEEKS ; week++) 
{
gotoMovie(); // Done 14 times.   
for (day=0 ; day<NUMDAYS ; day++) {
eat();     // Done 98 times
study();
sleep();

}
}

Often limits on loops are set with constants or #define 
statements that are prominently visible at the top of 
the file. This allows you to easily change the 
behavior of your program.

Also note how we use indentation to clearly mark code 
blocks.  This is very important, even for simple 
programs, and it will make your code much easier to 
debug and help you avoid mistakes while writing.
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Part 3: The Scope of Variables

We mentioned earlier that C++ lets you define 
variables that only exist within a particular loop.  C 
lets you define variables in a couple of different 
�scopes�, or parts of the program in which the 
variable is visible.
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Global Scope:
All variables in C/C++ exist within a certain scope or context.
Scope refers to where variables may be accessed in your program. 
Variables defined outside of function blocks are said to be in Global 
Scope.  They may be accessed by any function below their 
definition statement.

int globalInt;
void printInt();

int main (){
globalInt = 1;
printInt();
return 0;

}

void printInt() {
  printf(“%d\n”, globalInt); 
}

globalInt is visible in all code 
listed after its definition.

The global variable globalInt 
is defined outside of �main� 
or any other function.
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int number;
void printInt();
void printFloat();

int main (){
number = 1;
printInt();
printFloat();
return 0;

}

void printInt() { 
  printf(“%d\n”, number);
}

void printFloat() {
float number = 5.0;
printf(“%f\n”, number);

}

Local versus Global Scope:

A global integer variable 
named �number� is defined 
here.

A local variable (defined within 
a function) with the same name 
will override the global 
definition, but only within that 
function.  The global variable is 
unaffected.

In the scope of this function, 
�number� is a float and has 
no relation to the global 
variable.

Only one variable of a given name can be declared in 
each scope:

int main(){
int a;
float a;   // not allowed!

} 
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Using the Smallest Scope:

In general you should avoid using global 
variables.  

If many functions can change a value it's very 
difficult to keep track of what's going on.  It's 
much better to pass data to functions explicitly 
rather than to define data globally.

For clearer code, always restrict variables to the 
smallest possible scope!



  

 

and computers are very good at the kinds of 
calculations these disciplines require.  Statistical 
calculations often involve repeating the same 
operations many times.  As we saw in the section on 
loops, this becomes trivial when computers are 
available.

(The pictures are Jacob Bernoulli, Abraham DeMoivre, 
and Joseph Fourier.)



  

 

When we're in school, we tend to think of science as the 
process shown at the top of this picture: Taking a 
generalization (like the Law of Gravitation), plugging in 
some numbers, doing some algebra and maybe applying 
some other generalizations (like F=ma) to arrive at a 
specific answer to a specific question.  This process of 
deriving a specific answer from a general principle is called 
�deductive reasoning�.

In reality, there's a second, more important and more difficult, 
component to science, called �inductive reasoning�.  This is 
the process of taking some specific data, acquired through 
experiments, and producing a generalization (a hypothesis) 
that is consistent with those data.  This is how science 
progresses.

Probability and statistics provide us with powerful tools for 
analyzing our data, and for testing the quality of our 
hypotheses.
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�Strong Inference�:

Devise alternative hypotheses.

Devise a crucial experiment (or several of them), with 
alternative possible outcomes, each of which will, as 
nearly as possible, exclude one or more of the 
hypotheses.

Carry out the experiment so as to get a clean result.

Recycle the procedure, making subhypotheses or 
sequential hypotheses to refine the possibilities that 
remain, and so on.

In 1964, John R. Platt wrote about a form of the Scientific Method that he 
called �Strong Inference�.  It goes as follows:

Platt's article is here:
http://pages.cs.wisc.edu/~markhill/science64_strong_inference.pdf



  

 

When we do an experiment, we're always at least at two removes from 
the thing we're trying to see.  We assume that there's some 
underlying truth that has a single, well-defined value (like the speed of 
light in a vacuum), but when we measure it, we see a range of 
different values.  This is partly because of imperfections in our 
instruments, but there may also be physical limits to the precision of 
our measurements.

If we could make infinitely many measurements, we we see that the 
values we observe fall into some distribution like the middle picture.  
This curve gives the probability that any given observation will have a 
particular value.

Using statistics, we can take our finite set of observations and use them 
to make educated guesses about the shape of this underlying 
probability distribution.  But that's as close to the �truth� as we can get. 
 From there, we just have to assume that the mean of the probability 
distribution is equal to the �true� value we're trying to measure.
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Systematic vs. Random Uncertainties:
We can group the uncertainties in our data into two categories:

Systematic Uncertainties:
These are the result of things that systematically shift the values we 
measure by a constant amount (or factor).  Once these uncertainties 
are identified, it's usually possible to correct for them.
For example, maybe the meter stick you used was really only 0.99 
meters long.  We can correct our data to account for this.

Random Uncertainties:
These are the result of things that shift each measurement by a 
different amount, at random.  For example, electronic noise may 
introduce random uncertainties into your data.

Since each measurement is shifted by a different amount, correcting 
for this sort of uncertainty is not so straightforward.  Usually, to extract 
the underlying �truth� from our data we need to use the mathematics of 
statistics.

These are the things that define the shape of that 
underlying probability distribution.  We'll concentrate 
on the random uncertainties.



  

 

Consider a parameter we wish to measure 
(i.e. the acceleration due to gravity).



  

 

Specifically, if we normalize the area under the curve 
to 1,  this distribution shows the probability that a 
given measurement will have a value between x and 
x+dx.



  

 

 
 

In fact the Central Limit Theorem tells us that a 
sufficiently large linear combination of random 
variables always approaches a Normal distribution.

This was a source of amazement to early statisticians, 
who saw this curve popping up everywhere: 
astronomical data, actuarial tables, agricultural data.  
The Central Limit Theorem explained why this was 
so.



  

 

Our certainty in the true value of the underlying 
quantity is limited by what we know about how the 
true value gives rise to the parent probability 
distribution.



  

 

As we'll see, the �variance� is defined to be just the 
square of the standard deviation.

We can use the data in our Sample Distribution to 
make defensible statements about the Parent 
Distribution, such as �We are 95% certain that the 
mean of the Parent Distribution lies between 8.1 and 
11.2�.

Notice that we're not even talking about the underlying 
�truth� any more.  All we can really talk about are 
estimates of the parameters of the underlying Parent 
Distribution, based on the measurements in our 
Sample Distribution.  Does the mean of Parent 
Distribution equal the True Value?  Is there really a 
True Value, separate from this mean?  Does it 
matter?



  

 

As you can see, there's a ~68% probability that any 
given measurement will yield a value that lies within 
+/- sigma of the mean.  There's an ~95% probability 
that the value will lie within +/- 2 sigma.
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Next Time:
� More on passing data to functions
� Solving problems with the help of random numbers

This week's Lab:This week's Lab:

PreLab Preparation: review the description of PreLab Preparation: review the description of 
generating random numbers in this week's reading generating random numbers in this week's reading 
before the lab.before the lab.
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The End

Thanks!


