6. The gravitational forces on m_5 from the two 5.00g masses m_1 and m_4 cancel each other. Contributions to the net force on m_5 come from the remaining two masses:

$$F_{\text{net}} = \frac{\left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2\right) \left(2.50 \times 10^{-3} \text{ kg}\right) \left(3.00 \times 10^{-3} \text{ kg} - 1.00 \times 10^{-3} \text{ kg}\right)}{\left(\sqrt{2} \times 10^{-1} \text{ m}\right)^2}$$
$$= 1.67 \times 10^{-14} \text{ N}.$$

The force is directed along the diagonal between m_2 and m_3 , towards m_2 . In unit-vector notation, we have

$$\vec{F}_{\text{net}} = F_{\text{net}} (\cos 45^{\circ} \hat{\mathbf{i}} + \sin 45^{\circ} \hat{\mathbf{j}}) = (1.18 \times 10^{-14} \,\text{N}) \,\hat{\mathbf{i}} + (1.18 \times 10^{-14} \,\text{N}) \,\hat{\mathbf{j}}$$