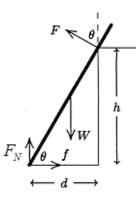
31. The diagram below shows the forces acting on the plank. Since the roller is frictionless the force it exerts is normal to the plank and makes the angle θ with the vertical. Its magnitude is designated *F*. *W* is the force of gravity; this force acts at the center of the plank, a distance *L*/2 from the point where the plank touches the floor. *F_N* is the normal force of the floor and *f* is the force of friction. The distance from the foot of the plank to the wall is denoted by *d*. This quantity is not given directly but it can be computed using $d = h/\tan \theta$.



The equations of equilibrium are:

horizontal force components
$$F \sin \theta - f = 0$$

vertical force components $F \cos \theta - W + F_N = 0$
torques $F_N d - fh - W \left(d - \frac{L}{2} \cos \theta \right) = 0.$

The point of contact between the plank and the roller was used as the origin for writing the torque equation.

When $\theta = 70^{\circ}$ the plank just begins to slip and $f = \mu s F_N$, where μ_s is the coefficient of static friction. We want to use the equations of equilibrium to compute F_N and f for $\theta = 70^{\circ}$, then use $\mu_s = f/F_N$ to compute the coefficient of friction.

The second equation gives $F = (W - F_N)/\cos \theta$ and this is substituted into the first to obtain

$$f = (W - F_N) \sin \theta / \cos \theta = (W - F_N) \tan \theta.$$

This is substituted into the third equation and the result is solved for F_N :

$$F_{N} = \frac{d - (L/2)\cos\theta + h\tan\theta}{d + h\tan\theta} W = \frac{h(1 + \tan^{2}\theta) - (L/2)\sin\theta}{h(1 + \tan^{2}\theta)} W,$$

where we have use $d = h/\tan\theta$ and multiplied both numerator and denominator by $\tan \theta$. We use the trigonometric identity $1 + \tan^2\theta = 1/\cos^2\theta$ and multiply both numerator and denominator by $\cos^2\theta$ to obtain

$$F_N = W \left(1 - \frac{L}{2h} \cos^2 \theta \sin \theta \right).$$

Now we use this expression for F_N in $f = (W - F_N)$ tan θ to find the friction:

$$f = \frac{WL}{2h} \sin^2\theta \cos\theta.$$

We substitute these expressions for *f* and F_N into $\mu_s = f/F_N$ and obtain

$$\mu_s = \frac{L\sin^2\theta\cos\theta}{2h - L\sin\theta\cos^2\theta}.$$

Evaluating this expression for $\theta = 70^{\circ}$, we obtain

$$\mu_s = \frac{(6.1\,\mathrm{m})\sin^2 70^\circ \cos 70^\circ}{2(3.05\,\mathrm{m}) - (6.1\,\mathrm{m})\sin 70^\circ \cos^2 70^\circ} = 0.34.$$