101. (a) The initial momentum of the car is

$$\vec{p}_i = m\vec{v}_i = (1400 \text{ kg})(5.3 \text{ m/s})\hat{j} = (7400 \text{ kg} \cdot \text{m/s})\hat{j}$$

and the final momentum is $\vec{p}_f = (7400 \text{ kg} \cdot \text{m/s})\hat{i}$. The impulse on it equals the change in its momentum: $\vec{J} = \vec{p}_f - \vec{p}_i = (7400 \text{ N} \cdot \text{s})(\hat{i} - \hat{j})$.

(b) The initial momentum of the car is $\vec{p}_i = (7400 \text{ kg} \cdot \text{m/s})\hat{i}$ and the final momentum is $\vec{p}_f = 0$. The impulse acting on it is $\vec{J} = \vec{p}_f - \vec{p}_i = (-7.4 \times 10^3 \text{ N} \cdot \text{s})\hat{i}$.

(c) The average force on the car is

$$\vec{F}_{avg} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\vec{J}}{\Delta t} = \frac{(7400 \text{ kg} \cdot \text{m/s})(\hat{i} - \hat{j})}{4.6 \text{ s}} = (1600 \text{ N})(\hat{i} - \hat{j})$$

and its magnitude is $F_{avg} = (1600 \text{ N})\sqrt{2} = 2.3 \times 10^3 \text{ N}.$

(d) The average force is

$$\vec{F}_{avg} = \frac{\vec{J}}{\Delta t} = \frac{(-7400 \text{ kg} \cdot \text{m/s})\hat{i}}{350 \times 10^{-3} \text{ s}} = (-2.1 \times 10^4 \text{ N})\hat{i}$$

and its magnitude is $F_{avg} = 2.1 \times 10^4$ N.

(e) The average force is given above in unit vector notation. Its x and y components have equal magnitudes. The x component is positive and the y component is negative, so the force is 45° below the positive x axis.