28. (a) Free-body diagrams for the blocks *A* and *C*, considered as a single object, and for the block *B* are shown below. *T* is the magnitude of the tension force of the rope, F_N is the magnitude of the normal force of the table on block *A*, *f* is the magnitude of the force of friction, W_{AC} is the combined weight of blocks *A* and *C* (the magnitude of force \vec{F}_{gAC} shown in the figure), and W_B is the weight of block *B* (the magnitude of force \vec{F}_{gB} shown). Assume the blocks are not moving. For the blocks on the table we take the *x* axis to be to the right and the *y* axis to be upward. From Newton's second law, we have

x component:
$$T - f = 0$$

y component: $F_N - W_{AC} = 0$.

For block *B* take the downward direction to be positive. Then Newton's second law for that block is $W_B - T = 0$. The third equation gives $T = W_B$ and the first gives $f = T = W_B$. The second equation gives $F_N = W_{AC}$. If sliding is not to occur, *f* must be less than $\mu_s F_N$, or $W_B < \mu_s W_{AC}$. The smallest that W_{AC} can be with the blocks still at rest is

$$W_{AC} = W_B / \mu_s = (22 \text{ N}) / (0.20) = 110 \text{ N}.$$

Since the weight of block A is 44 N, the least weight for C is (110 - 44) N = 66 N.

(b) The second law equations become

$$T - f = (W_A/g)a$$

$$F_N - W_A = 0$$

$$W_B - T = (W_B/g)a.$$

In addition, $f = \mu_k F_N$. The second equation gives $F_N = W_A$, so $f = \mu_k W_A$. The third gives $T = W_B - (W_B/g)a$. Substituting these two expressions into the first equation, we obtain

$$W_B - (W_B/g)a - \mu_k W_A = (W_A/g)a.$$

Therefore,

$$a = \frac{g(W_B - \mu_k W_A)}{W_A + W_B} = \frac{(9.8 \text{ m/s}^2)(22 \text{ N} - (0.15)(44 \text{ N}))}{44 \text{ N} + 22 \text{ N}} = 2.3 \text{ m/s}^2.$$