13. (a) The free-body diagram for the crate is shown below. \vec{T} is the tension force of the rope on the crate, \vec{F}_N is the normal force of the floor on the crate, $m\vec{g}$ is the force of gravity, and \vec{f} is the force of friction. We take the +x direction to be horizontal to the right and the +y direction to be up. We assume the crate is motionless. The equations for the x and the y components of the force according to Newton's second law are:

$$T\cos\theta - f = 0$$
$$T\sin\theta + F_N - mg = 0$$

where $\theta = 15^{\circ}$ is the angle between the rope and the horizontal. The first equation gives $f = T \cos \theta$ and the second gives $F_N = mg - T \sin \theta$. If the crate is to remain at rest, f must be less than $\mu_s F_N$, or $T \cos \theta < \mu_s (mg - T \sin \theta)$. When the tension force is sufficient to just start the crate moving, we must have

$$T\cos\theta = \mu_s (mg - T\sin\theta).$$

We solve for the tension:

$$T = \frac{\mu_s mg}{\cos \theta + \mu_s \sin \theta}$$

= $\frac{(0.50) (68) (9.8)}{\cos 15^\circ + 0.50 \sin 15^\circ}$
= $304 \approx 3.0 \times 10^2 \,\mathrm{N}.$

(b) The second law equations for the moving crate are

$$T\cos\theta - f = ma$$

$$F_N + T\sin\theta - mg = 0.$$

Now $f = \mu_k F_N$, and the second equation gives $F_N = mg - T\sin\theta$, which yields $f = \mu_k (mg - T\sin\theta)$. This expression is substituted for f in the first equation to obtain

$$T\cos\theta - \mu_k (mg - T\sin\theta) = ma$$
,

so the acceleration is

$$a = \frac{T\left(\cos\theta + \mu_k \sin\theta\right)}{m} - \mu_k g$$

Numerically, it is given by

$$a = \frac{(304 \text{ N})(\cos 15^\circ + 0.35 \sin 15^\circ)}{68 \text{ kg}} - (0.35)(9.8 \text{ m/s}^2) = 1.3 \text{ m/s}^2.$$