49. We take +y to be up for both the monkey and the package.

(a) The force the monkey pulls downward on the rope has magnitude F. According to Newton's third law, the rope pulls upward on the monkey with a force of the same magnitude, so Newton's second law for forces acting on the monkey leads to

$$F - m_m g = m_m a_m,$$

where m_m is the mass of the monkey and a_m is its acceleration. Since the rope is massless F = T is the tension in the rope. The rope pulls upward on the package with a force of magnitude F, so Newton's second law for the package is

$$F+F_N-m_pg=m_pa_p,$$

where m_p is the mass of the package, a_p is its acceleration, and F_N is the normal force exerted by the ground on it. Now, if *F* is the minimum force required to lift the package, then $F_N = 0$ and $a_p = 0$. According to the second law equation for the package, this means $F = m_p g$. Substituting $m_p g$ for *F* in the equation for the monkey, we solve for a_m :

$$a_m = \frac{F - m_m g}{m_m} = \frac{(m_p - m_m)g}{m_m} = \frac{(15 - 10)(9.8)}{10} = 4.9 \text{ m/s}^2.$$

(b) As discussed, Newton's second law leads to $F - m_p g = m_p a_p$ for the package and $F - m_m g = m_m a_m$ for the monkey. If the acceleration of the package is downward, then the acceleration of the monkey is upward, so $a_m = -a_p$. Solving the first equation for *F*

$$F = m_p(g + a_p) = m_p(g - a_m)$$

and substituting this result into the second equation, we solve for a_m :

$$a_m = \frac{(m_p - m_m)g}{m_p + m_m} = \frac{(15 - 10)(9.8)}{15 + 10} = 2.0 \text{ m/s}^2.$$

(c) The result is positive, indicating that the acceleration of the monkey is upward.

(d) Solving the second law equation for the package, we obtain

$$F = m_p (g - a_m) = (15)(9.8 - 2.0) = 120$$
 N.