53. To calculate the centripetal acceleration of the stone, we need to know its speed during its circular motion (this is also its initial speed when it flies off). We use the kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking the +y direction to be upward and placing the origin at the point where the stone leaves its circular orbit, then the coordinates of the stone during its motion as a projectile are given by $x = v_0 t$ and $y = -\frac{1}{2} g t^2$ (since $v_{0y} = 0$). It hits the ground at x = 10 m and y = -2.0 m. Formally solving the second equation for the time, we obtain $t = \sqrt{-2y/g}$, which we substitute into the first equation:

$$v_0 = x \sqrt{-\frac{g}{2y}} = (10 \text{ m}) \sqrt{-\frac{9.8 \text{ m/s}^2}{2(-2.0 \text{ m})}} = 15.7 \text{ m/s}.$$

Therefore, the magnitude of the centripetal acceleration is

$$a = \frac{v^2}{r} = \frac{(15.7 \text{ m/s})^2}{1.5 \text{ m}} = 160 \text{ m/s}^2.$$