Lecture 7/
Chapter 10,11

Rotation, Inertia,
Rolling,
Torque, and
Angular momentum
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Demos

July 14 2009 ROTATION ,TORQUE, ANGULAR MOMENTUM CHAPTER 10 & 11
Falling rod accelerates faster than g
Objects rolling down inclined in plane

Student on stool with barbells demoing angular momentum
Student on stool turning spinning bicycle wheel over

Demo rolling motion using a wheel

Stick receiving a blow on one end. Point where translation and rotation cancel out. Center
of percussion

Baseball bat pendulum

A pulley with string wrapped around it and a weight.

Atwoods machine with a large pulley.
Screw driver with different size handles



Summary of Concepts to Cover from chapter 10
Rotation

Rotating cylinder with string wrapped around it: example

Kinematic variables analogous to linear motion for constant
acceleration

Kinetic energy of rotation
Rotational inertia
Moment of Inertia

Parallel axis theorem



ROTATION ABOUT A FIXED AXIS

Spin an rigid object and define rotation axis.

Define angular displacement, angular velocity and angular
acceleration.

Show how angle 1s measured positive (counterclockwise).
Interpret signs of angular velocity and acceleration.
Point out analogy to 1D motion for the variables.

Point out that omega and alpha are vectors that lie along
the axis of rotation for a fixed axis of rotation Angular
displacements are not vectors. Show the figure with two
angular displacements of a book.



ROTATION WITH CONSTANT
ANGULAR ACCELERATION

* Restrict discussion to a fixed axis of rotation but
also applies if the axis 1s in translation as well.

 Write down or point out the analogy of the angular

kinematic equations with linear motion. See Table
11.1 1n text

e Same strategies are used to solve rotational
problems as linear ones.



Rotation with constant angular acceleration: Consider some
string wound around a cylinder.
There 1s no slippage between string and cylinder.
Red dot indicates a spot on the cylinder
that 1s rotating as I apply a force to the massless string
A%

Front view . — d

ma A T




Red dot indicates a spot on the cylinder
that 1s rotating as I apply a force to the massless string

Front view Isometric view

i N




Define radians

For 0 =360 degrees

s 21r . . :
60 = — = —— =27 radians in a circle
r r

Conversion from degrees to radians
1s 0.0174 radians per degree
or 57.3 degrees per radian

s and O are not vectors



Define angular velocity

Angular velocity:
Vector
Magnitude
Direction

Units

N

Take derivative holding r constant

ds do

_:’/‘_

dt dt
_ ds
Car
~db
Cdr

V=ra V=0 X1

v Tangential velocity

)

where @ 1s in radians per sec

and 6 1is in radians



Use Right hand rule to get direction of w

N

(0%

Counterclockwise is + for angular displacement O
and angular velocity .



(a)

Axis Axis

S

D) (¢)



Define Angular or Rotational Acceleration
V=rw

dv dw
a =—=r——
dt dt
a, = 0r  Also called the tangential acceleration
. do N .
o =——-> (rad /s”) 1is called the angular acceleration

otis in the same or opposite direction as ®

2
v 2

Recall there is also the radial acc. ¢, = 7 =r



Two Kinds of Acceleration

Tangential acceleration

a =0r=—r

dt

2
V

2
a—=r
r

W \ . .
\ Radial acceleration

in radial direction all the time

a=a:+a,

r a +a, are perpendicular to each other



For constant acceleration

1 1
X— Xg = _(Vo+v)t 0—-0,=—(w,+w)t
2 2
X— X, = v0t+%at2 0—6,=0w,+1o0s’
v=v,+at W =w,+ ot
2
v:=v,>+2a(x— x,) W’ =w, +20(6 —6,)

We have an analogous set of formulas for angular variables



What 1s the acceleration of the mass?
How do we take into account the
rotation of the pulley?

\%
I S
() I \\

ma A T

2F, =T -mg=-ma

l mg Need more information

Free body diagram



How do we define kinetic energy of a rotating body?
Kinetic energy of rotation and rotational inertia I.

Consider what 1s the kinetic energy of a small rigid
object moving in a circle?

L,
K=—my
2
Vv =Qr
1

K= Em” ‘®°  Looks strange

We call mr? the moment

of 1nertia I.

| R
K=—1w
2

Kinetic energy of rotation

It is very important that we can
define such a variable I. Here is
why



Suppose our rotating body 1s a rigid rod. Now

how do we define the kinetic energy?
1 2 ,..2
K=—mrow
2

1
K= 5 Y mr W’

v K:llw2
2

v

imax M
o I=2riam= JO r’dm =1ML
i=1

3

P

I 1s called the moment of inertia about an axis
through the end of the rod.

K = éMLza)z



Evaluation of the rotational inertia

L
=pJ.O ridr
L' ML
:p%r3é:p?:f?:%]\/{[} —1

for a rod rotating about an axis through
the end perpendicular to the length



Now consider rod rotating about an axis
through the center of mass of the rod

\Y%




Parallel Axis Theorem

Notice that the difference

Iend o Icom —

1 1 1 L
—ML* —— ML =—ML* = M (=) = My’
3 12 4 2

[, =1_ +Mr’

éen

I,=1I,,+Mr"  General relation



com

Rotation axis
through P

Rotation axis
through
center of mass

I =1, +Mh’



Moment of inertia of long thin rod of same
radius and length rotating about different
axes.

O T




Parallel Axis Theorem

Ip — Icom

1
12

1= —MLJ + M(g)2 =

Mh*

1 1

!

h=L/2

2 2 1 2
— ML +—ML* =—ML
12 4 3

(U




ma

MOMENT OF INERIA FOR A PULLEY

1
Mr

@ Rotating about central axis
S

Still need more information
1 T tofind T

2F, =T -mg=-ma

l meg Demo for moment of inertia
Rotate hoops and cylinders down an incline
plane



2
Hoop about

central axis

(a)

Annular cylinder
(or ring) about
central axis

()

/!‘V’*

>
Solid cylinder
(or disk) about

/ central axis

(¢)

Axis Axis
Solid cylinder Thin rod about Solid sphere
(or disk) about axis through center about any
central diameter perpendicular to diameter
‘ length
L ¢ L
R \/ \/
I=%MR2+éML2 (d) =%2ML2 (e) (f)
Axis Axis
Thin Hoop about any Slab about
spherical shell diameter perpendicular
about any axis through
diameter center
~~—a
© - iur? B o hM(a + 1) )




Concepts 1in Chapter 11
Rolling, Torque, and Angular Momentum

Torque

Newton’s Law for rotations

Work Energy theorem for rotations
Atwood machine with mass of pulley
More on rolling without sliding

Center of percussion: baseball bat and hammer
Sphere rolling down an inclined plane
Yo -yo

Angular momentum

Conservation of angular momentum
Breaking a stick balanced on a wine glass



Torque. It 1s similar to force but it also
depends on the axis of rotation. Why do we
have to define torque?

we rr ("R-PERP™Y, TUC FERMMDILULAR DISTAWE FROM
W CALL Ti ot o T Lk OF FORKE, THE

Use towel to open stuck LEVER ARM.
cap on jar | T

T PRODUCT OF FORCE
AN LEVER ARM 1S THE
TWISTING FORCE, OR

ECEUE.

Door knob far from hinge
Screw driver with large fat

' Torque = F-r.
handle TORGUE 15 THE ROTATONAL AI?N.OG oF 'FO$C'E

Lug wrench to unscrew Nome o Maxe ¥ FERempCUaR O THE

nuts on rim for tires .. WoRDS, A TeREEMDICKAR

> EFFECTRoc PosH !




Torque

Torque =rFsm@p=rxF=1
F=rF

* Also Torque =7,

Rotation axis

. 0
e ris a vector perpendicular to the TOA{1011 axis.
f 1s the angle between r and F when the tails are together.

e If Fis alongr, the torque 1s 0. Only component of F that is
perpendicular to r contributes to torque or a; Parallel
component contributes to a_.

e Increase r or F to get more torque.
e Positive torque corresponds to counterclockwise rotation
* Long handled wrench, door knob far from the hinge.



O

Rotation axis

Torque =rFsimgp=rxF=1



F(redrawn, with
tail at origin)

(@) () (0
Torque =rFsin¢g=rxF=1



TVL

Newton’s 2nd law for rotation

e

=l

Consider the consistency argument below

Suppose I have small mass at the end of a massless rod

0,

Rotation axis

F, = ma, [ =mr’
rt. = mra, 7
mr’a o=
= ! :Ia r
r
rF, =rFsmg
FxF=lIa
T=1o



What 1s the acceleration of the mass?
Now we can take into account the
rotation of the pulley?

r = radius
F=T
v Ilerz
M, 2 7
r\e a:a
r
M.
2F, =T -mg=-ma TCZ—mg:—ma
ma| | 1 r><F1=I(x o 2mg
T =M rzc/ (Mp+2m)
2 7 g M m
l m M a I = .
& T = P (Mp+2m)



Frictionless Sideways Atwood machine with a

pulley with mass

Now take into account the rotation of the pulley. > X
T, = Ma "y
Sliding T, —mg=—-—ma
block S = (T,-
bloc la=(T,-T;) R lo = (T2 —-T, )R new equation
T e~ ]
M M, a=0oR

T,

\

Frictionless
surface
Hanging
block H

1 a

| a
_MPR2E:(T2_T'1)R

2
lM Rzﬁz(mg—ma—Ma)R
2 " R
m
a= M g

m+ M +—F
( 2)



Now include friction between block M and

Sliding
block S

surface

la=(T,-T,) R

Frictionless
surface

Hanging
block H

| a

+X
T, — uMg = Ma ‘

T, —mg=—-ma -y

Ioo=(T,=T))R  pew equation
a=0oR
1 , d

MR = (T, ~T)R

L
MR

a4
R

o m(l—% .

m+ M +—+
( 5 )

= (mg —ma— Ma— UMg)R




/" OuR EANBL KOTATONRL ANRLDG 15

ANGUIAREMOMENTUNMS

BY AMALOGHY WITH LINERR
MOMENTUM (mASS TIMES

YELOUITY ), ANGULAR MOMENTYM
{5 DEFINCD AS

ROTATIONAL INERTIA
R
ANGULAR VELOCITY.

(BMBULAR VELOCITY 15 JUST THE TURNMG RATE. \T CBN BE
EXTRESSED N REVOLUWONS PER <ECOMND. Y

UNLIKE MA3S, THE AMOUNT OF ROTRTIONRL INERTIA (AN B6
CHANGED "M WD -FLGHT " BY REARANGING THE M55 .
T MAKES ROTATIoNAL MCRON MORE COMPLICATED TUAN
LINGRE MOTION.
ToRE, FOR EXAMELE,
TWE Crek OF
THE SPINNNG
\CE SKITER...

o



Inclined plane rolling demo.
Which object gets to the bottom
first and why?



Now we want to understand why objects accelerated at different rates
down the inclined plane. What is its total kinetic energy of the object
at the bottom of the inclined plane?

V=0

V

Case I: Frictionless plane. Pure translation,
No rotation. Then K =1/2 MV?
at the bottom of the plane

Case II: Slipless plane, Translation and rolling down inclined plane.
Then your 1 1

guess might be K = EM Vcomz + 51 coma)2 and you would be right.



First we have to ask what 1s rolling without slipping?

Linear speed of the center of mass of wheel 1s ds/dt

/

() C()In I C()In
without slipping

—-
P

~
- L
- - |

The angular speed ® about the com 1s dO/dt.

From s=0R we get ds/dt =dO/dt R or v_ = ®R for
smooth rolling motion



Rolling can be considered rotating about an axis through the
com while the center of mass moves.

At the bottom P is instantaneously at rest. The wheel also
moves slower at the bottom because pure rotation motion and
pure translation partially cancel out

See photo in Fig 12-4. Also tire tracks are clear in the

snow and are not smudged.

(a) Pure rotation —+ (b) Pure translation — (¢) Rolling motion
= - - — >
=) —_ —_

V= Veom v _VC()III V= 2‘](‘()111

— —
o=

—>
— =YV
VC()IH 4 ‘ com

—> —> —>
) = =) Y
) ) com + \

0

) =
com



Rolling as pure rotation

Consider rolling as pure rotation with angular velocity
w about an axis passing through point P. The linear

speed at the topis vy = W(2R) =2 v

before)

Rotation axis at P

com ( SAMe as

The kinetic energy now 1s

K = l] > What 1s I,?
2 p

I, =1, +MR’



What 1s the acceleration of a sphere smoothly

rolling down an inclined plane?
N

a) Drop an object? a4 =—§

b) Block sliding down a .
frictionless inclined plane? @ =—gsin6

¢) With friction?
a=—g(sinf@ — ucosh)

d) Sphere rolling down an inclined
plane? 7777



What 1s the acceleration of a sphere smoothly

rolling down an inclined plane?
N

F_=Ma,

net

x component Newtons Law

f,—Mgsin@=Ma,

Find torque about the com

Toet= 1O
Rf;‘ — Icoma
_ _acom

R

Solve for {,



—1

com acom

Solve for

in 6
, —__8sin

com 1 _I_ Icom

MR*

/| R — Mgsin = Ma,_,

This will predict which

objects will roll down the

inclined faster.



a.B = Let 0= 30 deg
I/ .
|+ —com Sin 30 = 0.5
MR
shape |I_. 1+1,, /MR? J|a_
sphere |2/5 MR? |1.4 0.71x g/2
disk |1/2MR2 | 1.5 0.67 x g/2
pipe |MR? 2.0 0.50 x g/2




(a)

gsinf

a., B =-—

com

1
1 + c0m2
MR

Yo-yo rolls down the string as if it were
inclined plane at 90 degrees

Instead of friction, tension in
the string holds it back

The moment of inertia 1. _ 1s that of the

com

yo-yo itself.




Can objects fall with a greater acceleration than
gravity? Work out with in class.




Things to consider

e Angular momentum of a rigid body

L=rxp=I1w
e Conservation of angular momentum

Lo, =10,



Another Stick Problem

A Stick resting on ice is struck at one end with
an impulsive force F perpendicular to its length

The stick has mass M and length L

(a) Find the acceleration of the center of mass (CM)
(b) Find the angular velocity of the stick about the CM

(¢) Find the velocity of each end of the stick in terms
of the velocity of the CM

(d) Find the center of percussion (CP), which is where
the rotational and translational motion cancel.



Diagram

At 1s the time over which the force lasted



\ =VCM

VLE y

Find the acceleration of the center of mass (CM)
F=Ma,,

F AP MV., —-0) MV
aCM:—:}F: = (CM ): M
M At At At
a MVCM
M MA
VCM
a -
CM At




(b)

Find the angular velocity of the stick about the CM

—

Use L=1Iw=r X p and conservation of angular momentum

AL=I1w=rXAp

I = EMIE = Moment of inertia about center of stick
Ap =MV, = Just after the blow

L
r= 5 = Moment arm

iMLza) = £Mv
12 2 M

6V,
L

) =




(c)

Find the velocity of each end of the stick in terms of the velocity of the CM

L V.. =V. — £
VRE:VCM+EG) LE — Yem 2(0

L 6V _ £ 6Veu
VRE:VCM+E( EM) VLE_VCM_2 I3 )
Ve = Ve, 3V, Vie =Veu = 3Veu
Ver =4V, Vie =—2Vqy

(d)

Find the center of percussion (CP), which is where the rotational and translational motion cancel

6V,
V)=V, —xw=V,, —x(—*

)=0



(1)
(2)
3)
“4)
)
(6)
(7)

The Breaking Broomstick Demo

“Experiment to demonstrate Inertia”

First published in 1881

Dramatic-Why does the stick break so violently and leave the glass intact?
Results somewhat counterintuitive

Example of Newton’s First Law

Notion of Impulse

Modeling



Physics Points

(1) Motion of each half behaves similarly to a single rod receiving
A blow at one end. Observe end of rod. What happens?

(2) Ve = —2Vey
Ver = 4Vey

(3) Center of mass almost falls in a straight line under gravity.

(4) Observe point on stick 2/3 from CM where the rotational
Motion is canceled by the vertical motion.(Instantaneous axis of rotation)

(5) Slight sideways constant velocity due to blow
(6) Measure YiE>Vem o Vre and compare to simple model

(7) Estimate At and deduce F.



Breaking Broomstick Demo

Vig DFAt TOTAL MASS: 2m
TOTAL LENGTH: 2L

Resistive torque

L
(3) Ve = Vem — Ew
2) lo=rXxp
L= Io= %(FAt) [tA¢] (Moment taken about Vew
o= %m Ve — | TA]

Angular momentum about L./2



Broomstick Breaking Cont.

2F At

LEFT SIDE
b = L L mvg, { TAt

LE — Yem — N >
272 / ) mL / ) mL

O6TA?

Vig = Vey = ey + W
Vie = —2 Ve w/out resistive torque

O6TA?

Vip = —2Vpy, +——

mL

w/ resistive torque

Resistive torque

RIGHT SIDE
L

Vee = Veuy +§CO

Vee = Vew T 3Veu

V RE — 4 VC M w/out resistive torque
OTA? o
VeE = 4VCM 7 w/ resistive torque




Apparatus

-4 {t long, 7/81n diameter white pine, cedar, or hickory dowel rod or broomstick
-Stick pins in each end; cut off heads

-Support each pin with a wine glass, coke can, block of wood, etc.

Need clearance

-Striking stick: Steel 1/2” in diameter and 21t long
-Mark the halfway point of stick so you know where to strike it

-Use a hacksaw to etch it around the circumference; avoid stick fracturing due to
other weakness.

-Raise striking stick and hit the center as hard as you can; follow through



Torque: magnitude and direction

—
o—

x
~
S

- F(redrawn, with
tail at origin)

0 ) 0 0
b ¥ T I
Line of action of F

(@) () (¢)



1 Angular momentum :
) magnitude and direction

J (redrawn, with
> tail at origin)

~

|
~|
X
S|

|
e~y
S

0, y

7 r
¢

S AP
Extension of p

(0)



Work-energy theorem for rotations

_1 2 2
2 2
W=1(0,-0,)

P=1Tw

1

T=7r

X
L=rxX

S



Conservation of
Angular momentum

(D
oL

lo,=lo,

Rotation axis

(a) Sit on stool with dumbells

7 held straight out
CTD 180 degrees apart. Slowly
" rotate the stool
o then bring arms in towards
a8 body. Angular
velocity will increase
T drastically.




r S r S ) 4 \S r S ) 4 A 1
DUARCE DXARCERS DRARGH S DXARCES DRV X

(a)

e
Lzuh

Initial

(¢)

i r e r b r i rf e rins
ORARCE DCARCES DRARCH DX ARCES DRARGE O

+
Ll) l_L wh
Final

¥ Spin up bicycle wheel on buffer and

hold its axis vertical while sitting
on the stool. Slowly rotate

the wheel axis 180 degrees and
the stool will rotate in accordance
with the law of conservation of
angular momentum.



Precession of a Bicycle Wheel Gyroscope
Under Gravitational Force

In each of the lecture halls there is a string which hangs from the ceiling and has a
hook attached to its free end. Spin the bicycle wheel up with the buffer wheel and
attach the axle of the wheel to the hook on the string. With the axis of the bicycle
wheel held horizontal, it is released. The axis remains horizontal while the wheel

precesses around a vertical axis.



ConcepTest 9.1b Bonnie and Klyde Il

Bonnie sits on the outer rim of a merry- 1) Klyde
go-round, and Klyde sits midway 2) Bonnie
between the center and the rim. The
merry-go-round makes one revolution
every two seconds. Who has the larger
linear (tangential) velocity?

\_

3) both the same

4) linear velocity is zero
for both of them




ConcepTest 9.3a Angular Displacement |

1) 1/2 0

An object at rest begins to rotate with
2) 140

a constant angular acceleration. If
this object rotates through an angle 6 3) 3/4 6
in the time t, through what angle did it 4) 26
rotate in the time 1/2 t? 5) 46




"

ConcepTest 9.4 Using a Wrench

You are using a wrench to
loosen a rusty nut. Which
arrangement will be the most

effective in loosening the nut?




ConcepTest 9.9 Moment of Inertia

Two spheres have the same radius and
equal masses. One is made of solid a) solid aluminum
aluminum, and the other is made from

b) hollow gold
a hollow shell of gold.

Cc) same

Which one has the bigger moment of
inertia about an axis through its
center?

. hollow

same mass & radius




ConcepTest 9.10 Figure Skater

A figure skater spins with her arms

extended. When she pulls in her arms, she 1) the same

reduces her rotational inertia and spins 2) larger because she’s rotating
faster so that her angular momentum is faster

conserved. Compared to her initial rotationa
kinetic energy, her rotational kinetic energy
after she pulls in her arms must be inertia is smaller

l i
3) smaller because her rotational

I large, I small,
@ small




ConcepTest 9.1b Bonnie and Klyde Il

Bonnie sits on the outer rim of a merry-go- 1) Klyde

round, and KIyd.e sits midway between the
center and the rim. The merry-go-round

makes one revolution every two seconds. 3) both the same

Who has the larger linear (tangential)

4) linear velocity is zero
velocity?

for both of them /

Their linear speeds v will be

different since v= Rw and -
Bonnie is located further out . \{
(larger radius R) than Klyde.

el () Al EWhReasitheNargerncentipetaliaccelerationy?




ConcepTest 9.3a Angular Displacement |

1) 1/2
An object at rest begins to rotate with
a constant angular acceleration. If 3) 314 [®
this object rotates through an angle q 4) 2[®
in the time t, through what angle did it 5) 4
rotate in the time 1/2 ¢?

The angular displacementis =1/2 t2 (starting from rest), and
there is a quadratic dependence on time. Therefore, in half the
time, the object has rotated through one-quarter the angle.




ConcepTest 9.4 Using a Wrench

You are using a wrench to
loosen a rusty nut. Which
arrangement will be the most

effective in loosening the nut?

Since the forces are all the —— / = wrench
same, the only difference is

the lever arm. The et .
arrangement with the largest

lever arm (case #2) will
provide the largest torque.

nut

o} | [V AT BV RAtNSHherdifferencervetweenfarangementssanc gy




ConcepTest 9.9 Moment of Inertia
Two spheres have the same radius and a) solid aluminum

equal masses. One is made of solid
aluminum, and the other is made from b) hollow gold

a hollow shell of gold. c) same

Which one has the bigger moment of
inertia about an axis through its

Yol4

Moment of inertia depends on
mass and distance from axis
squared. It is bigger for the

shell since its mass is located

farther from the center. same mass & radius

hollow




ConcepTest 9.10 Figure Skater

A figure skater spins with her arms
extended. When she pulls in her arms, she
reduces her rotational inertia and spins arger because she’s rotatifig
faster so that her angular momentum is faster

conserved. Compared to her initial rotationa
kinetic energy, her rotational kinetic energy
after she pulls in her arms must be inertia is smaller

1) the same

l i
3) smaller because her rotational

I large, I small,
o small o large

KE,=1/2 1 [¥]? =1/2 L [¥] (used L=
I(¥] ). Since L is conserved, larger
¥] means larger KE, ;. The “extra”
energy comes from the work she
does on her arms.

2o | [ AT BVVHErerdoesithielextralenergy comefromy



