University of Virginia

Department of Physics

Physics 606: How Things Work II

Lecture #38 Slides:

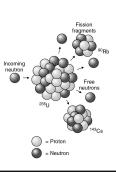
Nuclear Weapons II

Structure of Nucleus

- Nucleus contains two kinds of nucleons
 - Protons are positively charged
 Neutrons are neutral

- Two forces are active in a nucleus
 - Electrostatic repulsion between protons Sodium nucleus (11 protons, 12 neutrons
 - Nuclear force attraction between touching nucleons
 - At short distances, nuclear force is stronger than electric
 - At long distances, electric force is stronger than nuclear

Nuclear Stability


- In a nucleus, nucleons are in equilibrium
- To be classically stable, equilibrium must be stable
- To be quantum-mechanically stable, equilibrium must also be the potential energy minimum
- Quantum mechanics and the Heisenberg uncertainty principle allow the nucleons to try out arrangements outside their equilibrium positions
- If they find a path to a new equilibrium, they may take it and the nucleus may fall apart

Radioactivity

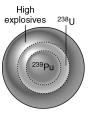
- Protons repel one another & neutrons are unstable
- Large nuclei have two problems:
 - Too many protons, then too much electrostatic potential
 - Too many neutrons, then neutrons are unstableDelicate balance between protons and neutrons
- Large nuclei tend to fall apart spontaneously
- Such decay is called fission
- Fission is a type of radioactivity

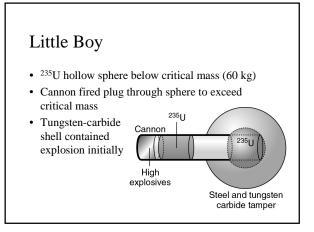
Induced Fission

- Large nuclei can break when struck
- Collision knocks nucleons out of stable equilibrium
- Hard collisions are best at inducing fission
- Neutrons make ideal projectiles for inducing fission

Chain Reaction Neutrons can induce fission Induced fission releases neutrons This cycle can repeat Chain reaction! Each fission releases energy Many fissions release prodigious amounts of energy release produces immense explosion

Requirement for a Bomb


- 1. Initial neutron source
- 2. Fissionable material (allowing induced fission)
- 3. Fissions must release additional neutrons
- 4. Material must use fissions efficiently (critical mass)


Fissionable Materials

- ²³⁵U and ²³⁹Pu are fissionable materials
- 235 U is rare and must be separated from 238 U
- 239 Pu is made by exposing 238 U to neutrons

Gadget & Fat Man

- ²³⁹Pu sphere below critical mass (6 kg)
- Crushed by explosives to above critical mass
- Shell of ²³⁸U assisted implosion Hig

