University of Virginia

Department of Physics

Physics 606: How Things Work II

Lecture #34 Slides:

Knives and Steel

Knives and Steel

Question:

If you take a steel paper clip and bend it repeatedly, will it become stiffer or less stiff with each new bend (at least initially)?

Observations About Knives

- Some knives keep a better edge than others
- Some knives chip while others bend
- Some knives rust while others don't
- Some rust-resistant knives don't keep an edge
- Some rust-resistant knives aren't magnetic

Stress and Strain

- When you squeeze a material, its thickness decreases
 Stress: the force per unit of top surface area (pressure)
 Strain: the fractional change in thickness
- For small stresses, strain is determined by the compressibility of the atoms themselves
- Since most steels contain similar atoms, most have the same relationship between stress and strain

Shear Stress and Shear Strain

- When you bend a material, it flexes
 - Shear stress: the force per unit of cross sectional area
 - Shear strain: the angle of bend in the material
- For small shear stresses, shear strain is determined by atomic properties
- Since most steels contain similar atoms, most have same relationship between shear stress and shear strain

Steel Crystals

- Steel is a crystalline material
- Crystals have large regions of orderly atoms
- Surfaces of atoms can "slip" across one another

Elastic and Plastic Deformation

- For small shear stresses, steel deforms elastically
 Deformation involves no overall shifting of atoms
 - Deformation involves no overall similing of atoms
 Deformation vanishes when shear stress is removed
 - Forces involved are proportional to distortion
- For large shear stresses, steel deforms plastically
 - Deformation involves shifting atoms (slip)
 - Deformation is permanent
 - Forces involved are less than proportional to distortion

Controlling Slip

- Dislocation defects assist slip

 Extra row of atoms allows a sheet of atom to slip gradually
- Thermal energy assists slip

 It helps dislocations move
- Dislocations help slip
- To stop slip

 Eliminate dislocations (difficult)
 - Lower temperature (awkward)
 - Spoil crystal structure (easy)
 - Hardened steel is harder to bend

Spoiling Crystal Structure

- · Work hardening
- Working breaks up crystals into tiny bits that won't slipAlloying
 - Introducing alien crystallites impedes slip in steel crystals
- · Heat treatment
 - Changes crystallite sizes and mixtures to alter ease of slip

Question:

If you take a steel paper clip and bend it repeatedly, will it become stiffer or less stiff with each new bend (at least initially)?

Steel and Carbon 1

- Below 723 C, iron and most steels are *bcc* ferrite
 - Ferrite doesn't dissolve carbon well
 - Carbon in steel forms hard crystallites of iron carbide
 - Depending on size and shape, these crystallites impede slip
- Above 723 C, iron and most steels are fcc austenite
 - Austenite dissolves carbon well
 - Austenite usually does not contain iron carbide
 - Austenite is quite susceptible to slip
 - Austenite is nonmagnetic