University of Virginia

Department of Physics

Physics 606: How Things Work II

Lecture #13 Slides:

Magnetically Levitated Trains

Magnetically Levitated Trains

Question:

Suppose you have a long bar magnet with a north pole at one end and a south pole at the other. If you break it in half, will the two new ends:

- 1. Attract
- 2. Repel
- 3. Neither

Observations About Maglev Trains

- Ordinary trains rattle on their rails
- Magnetic suspension would be nice and soft
- Repelling magnets tend to fall off one another
- · Attracting magnets tend to leap at each other

Magnetic Poles

- Two types: north & south
- Like poles repel, opposites attract - Forces consist of a matched pair
 - Forces increase with decreasing separation
- Analogous to electric charges EXCEPT:
 - No isolated magnetic poles ever found!
 - Net pole on an object is always zero!

Question:

- Suppose you have a long bar magnet with a north pole at one end and a south pole at the other. If you break it in half, will the two new ends:
- 1. Attract
- 2. Repel
- 3. Neither

Magnetic Fields

- A magnetic field is a structure in space that pushes on magnetic pole
- The magnitude of the field is proportional to the magnitude of the force on a test pole
- The direction of the field is the direction of the force on a north test pole

Electromagnetism 1

- · Electric fields
 - Push only on electric charges
 - Produced by electric charges
 - Can be produced by changing magnetism

• Magnetic fields

- Push only on magnetic poles
- Produced by magnetic poles
- Can be produced by changing electricity

Electromagnetism 2

- Magnetism created by
 - Poles (but isolated poles don't seem to exist)
 - Moving electric charges
 - Changing electric fields
- Electricity created by
 - Charges
 - Moving magnetic poles
 - Changing magnetic fields

Current

- Current measures the electric charge passing through a region per unit of time
- Current is measured in coulombs/second or amperes (amps)
- Electric fields cause currents to flow
- Currents are magnetic

Equilibrium

- Stable equilibrium
 - Zero net force at equilibrium
 - Accelerates toward equilibrium when disturbed
- Unstable equilibrium
 - Zero net force at equilibrium
 - accelerates away from equilibrium when disturbed
- Neutral equilibrium
 - Zero net force at or near equilibrium

Levitation & Stability

- Unstable Levitation Schemes – Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback

Electromagnetic Induction

- Changing magnetic field \rightarrow electric field
- Electric field in conductor \rightarrow current
- Current \rightarrow magnetic field
- Induced magnetic field opposes the original magnetic field change (Lenz's law)