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Prologue

Inclusive electron scattering has not fallen out of fashion even in
the presence of cw accelerators).
Why?
Because it still provides a rich, albeit complicated, mixture of
physics that has yet to be fully exploited.

® Momentum distributions and the spectral function S(k,E).

® Short Range Correlations and Multi-Nucleon Correlations

® FSI

e Scaling (x, v, @', x, § ), and scale breaking

® Medium Modifications -- tests of EMC; 6-quark admixtures

® Duality

® Superfast quarks => partons that have obtained momenta x > 1

The inclusive nature of these studies make disentangling all the different pieces
a challenge but experiments over a range of Q° and with different A will help.

Interpretation demands theoretical input
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Outline

e Short range Correlations
e Inelastic Electron Scattering

e Do FSI obstruct us from gleaning information about SRCs
In inclusive electron scattering?

e Ratios and FSI

e Transition from the study of correlations in QES to
correlations in DIS

e New experiments
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How do we know short range correlations exist?
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What else - Occupation Numbers?
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Density difference between 2°°Pb and 2°3Tl.

Experiment - Cavedon et al (1982)
Theory: Hartree-Fock orbitals with adjusted
occupation numbers is given by the curve.

The shape of the 3s/2 orbit is very well given by
the mean field calculation.

Occupation numbers scaled down by a factor ~0.65.
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Realistic many body calculations of the spectral function
contain correlated strength and it is significant
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K < Kg: single-particle contribution dominates
k = k.: SRC already dominates for E > 50 MeV
K > kq: single-particle negligible

Benhar via Rohe 2C
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What many calculations indicate is that the tail of n(k) for different
nuclei has a similar shape - reflecting that it is the short distance
part of the NN interactions, common fo all nuclei, is the source of
these dynamical correlations.
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Search for SRC in inclusive (e,e’) experiments
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Inclusive Electron Scattering from Nuclei

Two dominant and distinct
processes

Quasielastic from the nucleons in the nucleus

K+, W? =M 2
- ’ a —> W 2 (MH + mﬂj)
k k -
X = % -
Ma Mu_s, —K Ma Mu_s, —K
0.8~ T | /
. N VYD Inelastic (resonances) and DIS from
- B | X <1 the quark constituents of the
g 0 Q.E. nucleon.
O | / :
5 04 /DIS Inclusive final state means no
{ / : :
= / separation of two dominant processes
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- coh /TT X = QZ/(sz)
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electron energy loss w

L,w=energy loss
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do? a° E’
=2 ey ww
dO. dE . R E,

The two processes share the same initial state

2 - .
QES in IA a-o o Jdl?J dEo.; 6,.([(, E) 5() Z:fell”mi:ed b;h’rhef e

dQ&lll/ W—) kinematics. Specific (x, Q?)

select specific pieces of

5P60tral function the spectral function.

dZO- - n
DIS o Jdk J dE WS Si(k, E)

dQdv —

Spectral function

n(k) = JdE S(k, E)

However they have very different Q2 dependencies

O.i =« elastic (form factor)? = 1/Q* W2 scale with In Q? dependence

[ Exploit this dissimilar Q° dependence ]

Tuesday, November 15, 2011



Shape of QES Spectrum
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The quasielastic peak
(QE) is broadened by the
Fermi-motion of the
struck nucleon.

The quasielastic
contribution dominates
the cross section at low
energy loss (V) even at
moderate to high Q2.
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® The shape of the low Vv cross section is determined by the momentum
distribution of the nucleons.

® As Q2 >> inelastic scattering from the nucleons begins to dominate

@ We can use x and Q2 as knobs to dial the relative contribution of QES and
DIS.
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A dependence: higher internal momenta
broadens the peak
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But.... plotted against x, the width gets narrower with increasing
q -- momenta greater than k¢ show up at smaller values of x (x >
1) as q increases
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Inelastic contribution increases with Q2
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CdA, Day, Liuti, PRC 46 (1045) 1992
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and DIS at large x (small energy
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y—scaling Deuteron (E—02-019)
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What role FSI?

In (e,e’p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

In (e,e’) the failure of IA calculations to explain do at small energy loss
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Failure of the spectral function or of PWIA indicating
role of FSI?

One can make arguments ...
e RSC - lead to smaller correlation effects

e Redistribution of strength in E can account
for the difference

Fly) (c/MeV)

e Such a proposal has been made by:

e C. degli Atti, E. Pace, and G. Salme, Phys.
Lett. B127 (1983) 303 and

Meier-Hadjuk et alNuclearI—’hysicsA395 (1983;J 332-348 e DD in PrOceedingS of the Two Nucleon
Emission Workshop, Elba 1989, (Benhar
and Fabrocini, Eds).

’He scaling experimental data
and theory calculated such

that most of the high-E is e Data from JLab suggest as much
integrated over

Tuesday, November 15, 2011



JLab data on '2C (e,e’p) of Rohe et al.

Frick et al. PRC 70, 024309 (2004)
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FSI in QES. o

Take V and W to be the real and I
imaginary parts of the optical
potential of a nucleon in nuclear
matter.

A'I':l/w P— > :W

V can be ignored (20 MeV) compared V is small and the dominant part

from the "damping” of the
to the 1 f MeV here comes PIng
0 the 100s of M motion of the struck nucleon by the

imaginary potential W

P 0

V(g w) = O do'Flw — "W, 14(q, 0" —V(q))

1 % . ,
folding function F(w — w/) — —R Adt 5'(w_w )t 5_W(q’t)t
I Jo

U

If W = 0 then F(w - w’) becomes & function and Wi/ = Wpy1a?

Imaginary part of /
optical potential W(P )
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Rescattering depends on joint probability of finding the struck particle at
ition 1 s R B
position ri and a spectator at position r; P( )(f”i, ri) = pa(r)palr)g(rir;)
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Issues about FSI

e Extreme sensitivity fo hole size

e On-shell cross sections: nucleon is off-shell by in E by

hbar/At = hbar W

e total cross section?

e Unitarity? Folding function is normalized to one.

® Role of momentum dependent folding function (Petraki

etal, PRC 67 014605) has lead to a quenching of the tails.
eComparison to data with this new model would be useful

® Reasonable but what is the error band on the results?
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What I do not understand about FSI in QES.

Every nucleon has a 'hole' around it

@ @ Exclusion zone surrounds

@ @Y@ every nucleon

A

‘1" repulsive core
/
\(range attraction

\

~1 fm

electron is sensitive to a region r ~ 1/q around the vertex
for q =1GeV/c, r ~ 0.2fm
the ‘hole’ is about that large

What is the range of the FSI?

If FSI are restricted to the region of the hole then FSI®> = FSIA=2
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. A
CS Ratios and SRC s @) = S ALa(Aax G

In the region where correlations , j
: j=1
should dominate, large x, 4
= Sax(A)oz(x Q°) +
 ao(Aos(x, ) +
O | — 4 X,
500 OOO ® ©0o 3 7 7
e o O © 50

aj(A) are proportional to finding a nucleon in a j-nucleon correlation.
It should fall rapidly with j as nuclei are dilute.

0o(x, Q) = 0.p(x, Q%) and o;(x,Q%) = O for x > |.

2 04(x, Q%) In the ratios, off-shell effects
— = ao(A)
A op(x, Q%) and FSI largely cancel.
1<x<2
5 oalx, 6222 — aa(A) aij(A) is proportional
A Tps(x, Q7) - to probability of finding

a j-nucleon correlation
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Knocking out a nucleon in a two-nucleon pair

O+n: light cone variable for interacting nucleon belonging fo correlated

nucleon pair
g- +2m (/] | \/W2—4m2> Sx (@R >>)
%

Agn = 2

2m

/ FZ(atn)

Ratios

O O Accounts for Q% dependence
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Ratios, SRCs and Q2 scaling
B R B R
FSDS, Phys.Rev.C48:2451-2461,1993
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N. Fomin just showed these
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Emphatic arguments have been made that these ratio values are an
artifact - can not be interpreted as the ratio of correlated in strength
In heavy to light nuclei

The plateaus, remarkable as they appear, are a result of
FSI (and the role of SRC in FSI)
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Ratios are NOT a measure of a; - the relative
number of SRC pairs in nuclei

12

e

ratio

— full CGA

o p(k) 6(K"/2m=F) -

—600 —400

—200 0 200
y (MeV/c)

400

eThe hand-waving argument that FSI effects might
cancel in the A/d cross section ratios is contradicted by
the quantitative calculations.

eThe idea that the FSI could be the same as in the
deuteron is also conceptually wrong: if the nuclear
medium affects via Initial State Interaction the
correlated 2-nucleon system --- it does as the high-k
tail is (say) 4 times higher in a nucleus than in the
deuteron --- then the nuclear medium also increases
the FSI by a comparable factor.

® Indeed, in the standard Glauber-type calculations the
FSI effects are explicitly proportional to the nuclear
density.
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12C, 5.76GeV, 32deg 1

full

full S(k,E), no FSI

MF S(k,E), with FSI
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//"
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'/
10*14 (I VA B ‘ 1
1750 2000

At w = 2000 MeV (y = -0.50 and x =
1.75) FSI are not responsible for most of

the strength.

1 1
2250

1 1
2500

1 1 1 1
2750 3000

10

ratio Fe/D

'[ I 1 T T ]

[ q® = 2.3 (GeV/c)®

l— —

full CGA

— —  — high-k *0.5

"Despite these complications the data
at large x are sensitive to the
properties of P(k,E) at large K.... The
reduction of the high-k components by
a factor of two, with the corresponding
change of the short-range FSI has

significant effect at x > 1.3”
Benhar et al, PLB 343 (1995) 47-52

It would be useful fo have new calculations that uses a spectral
function that has the high k strength moved to match data.
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2
then does it destroy this relation?

It can only survive if the FSI from *He to Au
have a sympathetic relationship in the plateau
region.

>

o ¥*/ndf  0.7688/3

\g 0.4 | a -0.07879 = 0.006376
W o

o

kg

*Fe
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Ratios predictions from n(k)

16 | | | |

E02019, 18°, Cu/“H

r n(k) for 2H and Fe from Ciof -
degli Atti and Simula, Phys. Rev.
2 C 53, 1689 (1996) -

no CM motion, QES only

10 | -

R L I

0 | | | | | | |
04 0.6 0.8 1 1.2 14 1.6 1.8
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What is an experimentalist to do?

Encourage theorists to examine FSI
with respect to to the message the
data is trying to send.

® Direct ratios to °H, He, “He out to large x and
over wide range of Q2

e Study Q2 A dependence (FSI)

® Absolute Cross section to test exact
calculations and FSI

® Extrapolation fo NM
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Experiments

e 6 GeV (completed in Spring 2011)

» E-08-014: Three-nucleon short range correlations studies in
inclusive scattering for 0.8 < 2.8 (GeV/c)? [Hall A]

o 12 GeV

e EI12-06-105: Inclusive Scattering from Nuclei at x > 1 in the
quasielastic and deeply inelastic regimes [Hall C], approved.
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Motivation for EO8-014%

: : : Zhihong Ye, UVA
o
Sfuij onset of scalmg, rahog as a function of Oz, for 1<x<2 Y
e Verify and define scaling regime for 3N-SRC
® 3N-SRC over a range of density: “°Ca, '2C, “He ratios
o Test O3, for x> 2
® Absolute cross sections: test FSI, map out IMF distribution pa()
e Isospin effects on SRCs: “8Ca vs. 4°Ca
2N SRC
Kin 3.1:  21.0°, 2.905 GeV/c
2H€, 3H€, 4H€, IZC, 40,48Ca
N — Kin 4.1:  23.0°, 2.855 GeV/c
- Proposed Not taken - 2 0,48
A Added Taken | He, °C, ©%*Ca
T . ] Kin 5.1: 25.00, 2.795 GQV/C
[ _M ] 2H 3He. 4He. 12C, 4048Cq
ol _iimm——] (i1 465 | ' ' L
m; 2_0:— . g —: 3N SRC
S | -—-*“‘"___'“&___ Kin 3.2:  21.0° 3.055 GeV/c
o 15 aﬂ____'_:;wp--_—‘ 3He. 4He. 12C. 4048¢q
I __ ’ / ’
S — ) Kin 4.2:  23.0°, 3.035 GeV/c
- - — — 3He, “He, 12C, “048Cq
: Kin 5.2:  25.0°, 2.995 GeV/c
B SRR TTTIE TETIT TOUUE ST PP 3He, “He, 12C, 4048Cq
g N e ra—— A Kin 6.5: 28.0°, 2.845 GeV/c
[ 2N | )
SHe, 12C
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Can we make an connection to
quark distributions at x > 1?

Two measurements (very high Q?)
exist so far:

CCFR (V-C): F2(X) « eX s =8
BCDMS (U-Fe): Fa(X) « e% s = 16

Poor resolution, limited x range

Low statistics

CCFR results suggested large
contribution from SRC or other
exotic effects

We can, but first we must account =
for the fact that none of these
measurements are at the asymptotic
limit.

1072 ¢

10—3

[y
2
(9}

Number of Events

— Buras-Gaemers |
=== Cteq 4

— Exponential
s=8.3

— Fermi gas
==== Quasi-Deuteron

60 (505200) o057

70809 1 1106070809 1 1.1 1.2
X

BCDMS 200 GeV muon

T | T T T T

1076 L1

1.4
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How well does this work? 107 | - -
: 0.55
The comparison to the world data set is 02 | 065 -
good and can be used to extract the j W j
behavior of the SF at large x.
~ 1070 0.85 1
q - -
e At € < 0.75 where the high Q* data & Jos
dominates our data the agreement is w104 | T
good down to about Q¢ = 3 GeV?. '

1.05 -
® As € increases the dependence on Q? 105 L |
grows continually. : - :
e Agreement is still good except at low 5 _ : QEEM%*‘E’MC(C,D) |
Q2 where there is a QES contribution 107 I CCFR:Fe (£=0.75,0.85,0.95,1.05) -
and HT must play a role 1 10 100 1000

2 G V2
¢ Finally note that the BCDMS data fails & (GeY)

to display a dependence on momentum E02-019 carbon
transfer above € about 0.65 SLAC deuterium

BCDMS carbon
X CCFR projection
(€=0.75,0.85,0.95,1.05)
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Compare to the very high Q2 BCDMS and CCFR data

Fit our F,0 (over a limited range of &) with the functional
form F20 = Constant x e-s%

CCFR - (Q?% = 125 GeV?) s=8.3+0.7
BCDMS - (Q2% 52 - 200 GeV?) s=16.5+0.5

17 : . . i , . For all nuclei
Carbon .| ——
.| JLAB 02019
P
0({) 15 ™ + + @ .
- o
£ 14}
- + 2
=
13 s=15.0520.5 : @
12 ' : : ' l !
2 3 4 5 6 7 8 9
Q? (GeV?)

Our results contradict those of CCFR and support BCDMS
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Sensitivity to SRC

We wanf to be able fo isolate and _ e
probe two-nucleon and multi- <
nucleon SRCs 10"} |
Dotted = mean field approx. ! )
Solid = +2N SRCs. 10
Dashed = +multi-nucleon. 10"
10"
10"
0 2 4 6 8 10 12 14

11 GeV can reach Q2= 20( 13) GeV? at x = 1.3(1.5)
- very sensitive, especially at higher x values
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E12-06-105 Inclusive
Scattering from Nuclei
at x > 1in the
quasielastic and
deeply inelastic

super-fast quarks,
quark distribution functions
medium modifications

SRC, n(k), FSI, o

regimes SHMS, I
x n _
214 3 4 6,7 10,11 Soione R e —
H/ Hel He: ‘ L'/ ‘ Be/ x¥¥¥¥¥¥¥¥¥¥¥
R R AKRERERES ++
12Cl4o'48CG’CUIAu O_||||||||||||||||||||||||||||||||-

1.0 15 <20 =5 30 35 4.0

Two distinct kinematic regimes

® Moderate Q% and large x

e Two and multi-nucleon correlations

¢ A-dependence of strength, density dependence, non-isoscalarity

e Provide tests of ‘exact’ calculations [S(k,E)] through T, expose role of FSI
e Very high Q> and 1 < x < 1.5

e Extraction of SF and underlying quark distributions at x > 1

¢ Provide insight info origin of EMC effect

® Provide extreme sensitivity tfo non-hadronic components
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Finish

eInclusive (ee’) at large Q? scattering and x>l is a powerful tool to explore
long sought aspects of the NN interaction
® Considerable body of data exists
® Provides access to SRC and high momentum components through scaling,
ratios of heavy to light nuclei and allows systematic studies of FSI
® Scaling in § appears to work well even in regions where the DIS is not

the dominate process
® DIS is does not dominate over QES at 6 GeV but should at 11 GeV and

at Q% > 10 - 15 (GeV/c)°. We can expect that any scaling violations will

vanish as we go to higher Q2
® Once DIS dominates it will allow another avenue of access to SRC and to

quark distribution functions
eNew experiments have been approved to push these investigations into

heretofore unexplored regions
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If it was only this easy.

The correlation between the FTSE and the DOW for the last 6 months.

Oct 10, 2011 : wmAFTSE 5,399 ™=ADII 11,433.17
A
AS /‘ ¢ 0%
V .
\
/ -5%0
A

[ A =~ -10%
. I'l j ( ‘150/0

2011 Jun Jul Aug Sep Oct Nov
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