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926 Negele: Mean-field theory of nuclear structure and dynamics

measured cross sections and their experimental uncertain-
ties. Details of the analysis are described in a review arti-
cle (Friar and Negele, 1975) and error envelopes obtained
in this way for a variety of spherical nuclei (Sick, 1974;
Sick et al. , 1975; Friar and Negele, 1977, Sick et al. ,
1979) are compared with DME calculations in Fig. 11.
Whereas the overall agreement appears quite satisfactory,
individual discrepancies between the mean-field theory
and experiment are latent with interesting nuclear struc-
ture information. For example, whereas Ca and Pb con-
stitute good shell closures, Zr is known to have a signifi-
cant depopulation of the lpi~2 and Of&~2 orbitals and cor-
responding occupation of the Og9/2 level. A simple
schematic calculation based on the pairing theory (Negele,
1971) shows that in Zr the correlation correction de-
creases the interior density in the region of 2 fm by
roughly 8%, significantly improving the agreement with
experiment. (Analogous pairing calculations in Ca and
Pb yield no change in the density. ) The Ni nucleus is

another special case. When one calculates its energy as a
function of deformation, one finds it to be exceedingly
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soft with respect to quadrupole deformations. Thus the
simple static mean-field approximation is inadequate, and
one must allow for large amplitude collective motion in
the quadrupole degree of freedom. Although the general
formalism for large-amplitude collective motion in Sec. V
has not yet been applied to this nucleus, one observed that
the shapes of the prolate and oblate admixtures in the
wave function are sufficiently different that one expects
the large-interior density fluctuation to be somewhat di-
minished (Negele and Rinker, 1977). In all these cases,
then, one is led to the conclusion that the mean-field ap-
proximation not only describes the systematic behavior of
spherical nuclei throughout the Periodic Table, but also
serves as a valid starting point for systematic examination
of specific structure effects which go beyond the mean
field. Thus the phenomenological component of the ef-
fective interaction is small enough that it is sensible to
evaluate leading corrections to the mean field as if the ef-
fective interaction were actually derived from an underly-
ing two-body potential.
The discussion of the spatial distribution of matter thus

far has dealt essentially with protons, since we have only
considered the charge scattering of electrons. From a
theoretical point of view, given the strong interplay be-
tween neutron and proton distributions in the self-
consistent mean-field theory, it is difficult to imagine how
one could systematically obtain the correct proton distri-
butions throughout the Periodic Table while making sig-
nificant errors in neutron distributions. Nevertheless, al-
though neutron distributions are much more difficult to
measure experimentally and are subject to greater ambi-
guities of interpretations than protons, it is worthwhile to
briefly survey the present status of measurements of neu-
tron distributions.
The least ambiguous probe of neutron distributions is
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FIG. 10. Cross sections for elastic electron scattering from
Pb at 502 MeV compared with DME mean-field theory pre-

diction (solid line).
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FIG. 11. Comparison of DME mean-field theory charge dis-
tributions in spherical nuclei (dashed lines) with empirical
charge densities. The solid curves and shaded regions
represent the error envelope of densities consistent with the
measured cross sections and their experimental uncertainties.
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How do we know short range correlations exist?
Central density is saturated - nucleons can be packed 
only so close together:  pch * (A/Z) = constant 

J.W. Negele RMP 54 (913) 1982

O. Benhar, AIP Conf.Proc. 1189 (2009) 43-50 
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Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approx-
imation, using the plaquette gauge action and the Wilson quark action on a 324 (! (4.4 fm)4)
lattice. A NN potential VNN(r) is defined from the equal-time Bethe-Salpeter amplitude with a
local interpolating operator for the nucleon. By studying the NN interaction in the 1S0 and 3S1

channels, we show that the central part of VNN(r) has a strong repulsive core of a few hundred MeV
at short distances (r ! 0.5 fm) surrounded by an attractive well at medium and long distances.
These features are consistent with the known phenomenological features of the nuclear force.

PACS numbers: 12.38.Gc, 13.75.Cs, 21.30-Cb

More than 70 years ago, Yukawa introduced the pion
to account for the strong interaction between the nucle-
ons (the nuclear force) [1]. Since then, enormous efforts
have been devoted to understand the nucleon-nucleon
(NN) interaction at low energies both from theoretical
and experimental points of view. As shown in Fig.1,
phenomenological NN potentials are thought to be char-
acterized by three distinct regions [2, 3]: The long range
part (r " 2 fm) is well understood and is dominated
by the one pion exchange. The medium range part
(1 fm ! r ! 2 fm) receives significant contributions from
the exchange of multi-pions and heavy mesons (ρ, ω, and
σ). The short range part (r ! 1 fm) is empirically known
to have strong repulsive core [7], which is essential not
only for describing the NN scattering data, but also
for the stability and saturation of atomic nuclei, for de-
termining the maximum mass of neutron stars, and for
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FIG. 1: Three examples of the modern NN potential in the
1S0 (spin singlet and s-wave) channel: CD-Bonn [4], Reid93
[5] and AV18 [6] from the top at r = 0.8 fm.

igniting the Type II supernova explosions [8]. Although
the origin of the repulsive core must be closely related to
the quark-gluon structure of the nucleon, it has been a
long-standing open questions in QCD [9].

In this Letter, we report our first serious attempt to
attack the problem of nuclear force from lattice QCD
simulations [10]. The essential idea is to define a NN
potential from the equal-time Bethe-Salpeter (BS) ampli-
tude of the two local interpolating operators separated by
distance r [11]. This type of BS amplitude has been em-
ployed by CP-PACS collaboration to study the ππ scat-
tering on the lattice [12]. As we shall see below, our
NN potential shows a strong repulsive core of about a
few hundred MeV at short distances surrounded by an
attraction at medium and long distances in the s-wave
channel.

Let us start with an effective Schrödinger equation ob-
tained from the BS amplitude for two nucleons at low
energies [12, 13]:

−
1

2µ
∇2φ(&r) +

∫

d3r′ U(&r,&r′)φ(&r′) = Eφ(&r), (1)

where µ ≡ mN/2 and E is the reduced mass of the nu-
cleon and the non-relativistic energy, respectively. For
the NN scattering at low energies, the non-local poten-
tial U is represented as U(&r,&r′) = VNN(&r,∇)δ(&r−&r′) with
the derivative expansion [2]: VNN = VC(r) + VT(r)S12 +
VLS(r)&L · &S + O(∇2). Here S12 = 3(&σ1 · r̂)(&σ2 · r̂)− &σ1 · &σ2

is the tensor operator with r̂ ≡ |&r|/r, &S the total spin
operator, and &L ≡ −i&r × &∇ the relative angular mo-
mentum operator. The central NN potential VC(r), the
tensor potential VT(r) and the spin-orbit potential VLS(r)
can be further decomposed into various spin-isospin chan-
nels, e.g. VC(r) = V 1

C(r) + V σ
C (r)&σ1 · &σ2 + V τ

C (r)&τ1 · &τ2 +
V στ

C (r)(&σ1 · &σ2)(&τ1 · &τ2). In the phenomenological analy-
sis of the NN scattering phase shift [3], the Schrödinger
equation with a certain parametrization of VNN is solved
and compared with the data. On the other hand, if we
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FIGURE 2. Spin-isospin averaged NN radial correlation function in isospin symmetric nuclear matter at uniform density 
po = 0.16 fm^ (see Eq.(l)). The solid line shows the result of the calculation of Ref. [4], based on a realistic model of nuclear 
dynamics, while the dashed line has been obtained including statistical correlations only. 

NUCLEAR MANY-BODY THEORY 

Nuclear models taking into account the effects of dynamical correlations are based on the paradigm of nuclear many-
body theory (NMBT), stating that the nucleus can be viewed as a collection of A point-like protons and neutrons, 
whose dynamics are described by the non relativistic hamihonian 

S^; ijk : (5) 
;>' k>j>i 

Pi and m being the momentum of the /-th nucleon and its mass, respectively. 
The phenomenological NN potential, Vy, is determined by fitting the observed properties of the two-nucleon system 

in both bound and scattering states, i.e. deuteron properties, low energy scattering parameters and ^^ 4000 precisely 
measured proton-proton and proton-neutron scattering phase shifts corresponding to energies up to pion production 
threshold [7]. It turns out to be strongly spin-isospin dependent and non central, and reduces to the one-pion-exchange 
potential predicted by Yukawa's theory at large separation distance. 

The inclusion of the three-nucleon potential, providing a small contribution to the ground state expectation values 
of the hamihonian, is required to account for the measured binding energy of the three-nucleon systems [8]. 

The many body Schrodinger equation associated with the hamihonian of Eq.(5) can be solved exactly, using 
stochastic methods, for nuclei with mass number^ < 12. The resulting energies of the ground and low-lying excited 
states are in excellent agreement with experimental data [9]. 

It has to be emphasized that the dynamics of NMBT are fully determined by the observed properties of exactly 
solvable system. As a consequence, they do not suffer from the uncertainties involved in many-body calculations, 
unavoidably requiring approximations. Once the nuclear hamihonian is determined, calculations of the properties of 
a variety of nuclear systems, ranging from deuteron to neutron stars, can be carried out without making use of any 
adjustable parameters. 

The main difficulty associated with the use of the hamihonian of Eq.(5) in a many-body calculation lies in the strong 
repulsive core of the NN force, which cannot be handled within standard perturbation theory. In the shell model this 
problem is circumvented replacing the interaction terms in Eq.(5) with a well behaved mean field, according to 

S Vijk^Y^Ui (6) 
}>i k>j>i 
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⇢(x, x0) = ⇢(x)⇢(x0)g(x, x0)

|x � x

0| � r

c

àÜ g(x, x0) ⌧ 1
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What else? Occupation Numbers

mentum space—is quite close to the one predicted by a
single-particle calculation. The most telling information
on deviations from the shell model is found in the occu-
pation numbers. These quantities therefore assume a
particular place in our discussion.

III. THEORY

We next discuss the various concepts of orbitals in
correlated systems and the calculated occupation prob-
abilities. We first address the case of an infinite Fermi
liquid of constant density, which is easier to discuss than
finite systems. This allows us to introduce the concepts
of the spectral function and the renormalization function
z(k). We then discuss the various types of orbitals that
are relevant for finite systems. For both types of systems
we shall use theoretical results for both nuclear and
atomic systems to illustrate the concepts.

A. Nuclear matter

We begin the theoretical discussion with idealized in-
finite nuclear matter representing the ground state of
matter in the absence of the Coulomb force, which puts
a limit on the size of nuclei. Gross properties of large
nuclei, such as binding energies, size, etc., can be easily
understood by regarding them as charged drops of
nuclear matter. At low temperatures nuclear matter is
expected to be a superfluid; however, the shell gaps in
single-particle energies are larger than the pairing gap in
nuclei, and hence pairing is believed to be unimportant
in the closed-shell nuclei considered here. Therefore we
shall regard nuclear matter as a normal Fermi liquid and
ignore its superfluid properties.

The single-particle orbitals in nuclear matter are
plane-wave eigenstates of the momentum, due to trans-

lational invariance, which simplifies the theory consider-
ably. The one-body density matrix is diagonal in these
states, whose occupation numbers give the momentum
distribution n(k) of nucleons in nuclear matter. The
momentum distribution n(k) has been calculated for re-
alistic nuclear forces with the correlated basis-functions
(CBF) method (Fantoni and Pandharipande, 1984) as
well as with the Brueckner-Bethe-Goldstone (BBG)
method (Dickhoff and Muther, 1992). The results for
n(k) obtained with the CBF method and the Urbana
model of the nucleon-nucleon force are shown in Fig. 4
using the single-particle spectrum �(k).

Due to correlations, the occupation number
n(k⇥kF) for momenta below the Fermi momentum
kF is reduced to 0.7–0.8, and the states with k�kF have
small but finite occupations. Atomic liquid 3He, another
Fermi liquid, has been extensively studied. Its predicted
n(k) (Fabrocini et al., 1992) is shown in Fig. 5 for com-
parison. Because of the large repulsive core in the inter-
atomic potential, the n(k⇥kF) in liquid 3He is expect-

FIG. 3. Density difference between 206Pb and 205Tl. The ex-
perimental result of Cavendon et al. (1982) is given by the er-
ror bars; the prediction obtained using Hartree-Fock orbitals
with adjusted occupation numbers is given by the curve. The
systematic shift of 0.0008 fm ⇤3 at r⇥4 fm is due to deficiencies
of the calculation in predicting the core polarization effect.

FIG. 4. Occupation of states of nuclear matter as a function of
� , with �F referring to the Fermi energy. The dashed curve
gives the quasihole strength z .

FIG. 5. Momentum distribution of atomic 3He liquid at the
experimental equilibrium density.

984 Pandharipande et al.: Independent particle motion and correlations . . .

Rev. Mod. Phys., Vol. 69, No. 3, July 1997

Density difference between 206Pb and 205Tl.

Experiment - Cavedon et al (1982)
Theory: Hartree-Fock orbitals with adjusted 
occupation numbers is given by the curve.  

V. R. Pandharipande, I. Sick and P. K. 
A. deWitt Huberts, Rev. Mod. Phys. 
69 (1997) 981.

The shape of the 3s1/2 orbit is very well given by 
the mean field calculation. 
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What many calculations indicate is 
that the tail of n(k) for different 
nuclei has a similar shape - 
reflecting that the NN interaction, 
common to all nuclei, is the source 
of these dynamical correlations.
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Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approx-
imation, using the plaquette gauge action and the Wilson quark action on a 324 (! (4.4 fm)4)
lattice. A NN potential VNN(r) is defined from the equal-time Bethe-Salpeter amplitude with a
local interpolating operator for the nucleon. By studying the NN interaction in the 1S0 and 3S1

channels, we show that the central part of VNN(r) has a strong repulsive core of a few hundred MeV
at short distances (r ! 0.5 fm) surrounded by an attractive well at medium and long distances.
These features are consistent with the known phenomenological features of the nuclear force.
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More than 70 years ago, Yukawa introduced the pion
to account for the strong interaction between the nucle-
ons (the nuclear force) [1]. Since then, enormous efforts
have been devoted to understand the nucleon-nucleon
(NN) interaction at low energies both from theoretical
and experimental points of view. As shown in Fig.1,
phenomenological NN potentials are thought to be char-
acterized by three distinct regions [2, 3]: The long range
part (r " 2 fm) is well understood and is dominated
by the one pion exchange. The medium range part
(1 fm ! r ! 2 fm) receives significant contributions from
the exchange of multi-pions and heavy mesons (ρ, ω, and
σ). The short range part (r ! 1 fm) is empirically known
to have strong repulsive core [7], which is essential not
only for describing the NN scattering data, but also
for the stability and saturation of atomic nuclei, for de-
termining the maximum mass of neutron stars, and for
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FIG. 1: Three examples of the modern NN potential in the
1S0 (spin singlet and s-wave) channel: CD-Bonn [4], Reid93
[5] and AV18 [6] from the top at r = 0.8 fm.

igniting the Type II supernova explosions [8]. Although
the origin of the repulsive core must be closely related to
the quark-gluon structure of the nucleon, it has been a
long-standing open questions in QCD [9].

In this Letter, we report our first serious attempt to
attack the problem of nuclear force from lattice QCD
simulations [10]. The essential idea is to define a NN
potential from the equal-time Bethe-Salpeter (BS) ampli-
tude of the two local interpolating operators separated by
distance r [11]. This type of BS amplitude has been em-
ployed by CP-PACS collaboration to study the ππ scat-
tering on the lattice [12]. As we shall see below, our
NN potential shows a strong repulsive core of about a
few hundred MeV at short distances surrounded by an
attraction at medium and long distances in the s-wave
channel.

Let us start with an effective Schrödinger equation ob-
tained from the BS amplitude for two nucleons at low
energies [12, 13]:

−
1

2µ
∇2φ(&r) +

∫

d3r′ U(&r,&r′)φ(&r′) = Eφ(&r), (1)

where µ ≡ mN/2 and E is the reduced mass of the nu-
cleon and the non-relativistic energy, respectively. For
the NN scattering at low energies, the non-local poten-
tial U is represented as U(&r,&r′) = VNN(&r,∇)δ(&r−&r′) with
the derivative expansion [2]: VNN = VC(r) + VT(r)S12 +
VLS(r)&L · &S + O(∇2). Here S12 = 3(&σ1 · r̂)(&σ2 · r̂)− &σ1 · &σ2

is the tensor operator with r̂ ≡ |&r|/r, &S the total spin
operator, and &L ≡ −i&r × &∇ the relative angular mo-
mentum operator. The central NN potential VC(r), the
tensor potential VT(r) and the spin-orbit potential VLS(r)
can be further decomposed into various spin-isospin chan-
nels, e.g. VC(r) = V 1

C(r) + V σ
C (r)&σ1 · &σ2 + V τ

C (r)&τ1 · &τ2 +
V στ

C (r)(&σ1 · &σ2)(&τ1 · &τ2). In the phenomenological analy-
sis of the NN scattering phase shift [3], the Schrödinger
equation with a certain parametrization of VNN is solved
and compared with the data. On the other hand, if we

k > 250 MeV/c
15% of nucleons
60% of KE

k < 250 MeV/c
85% of nucleons
40% of KE

Theory suggests a common 
feature for all nuclei
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The momentum distribution is 
made of a mean field piece and 
piece due to short range 
correlations.

Ciofi/Simula

 At large k the ratio between 
the 2H and heavy approaches a 
constant

Universality of SRC

Ciofi/Simula
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nucleon [9] and Urbana-IX three-nucleon [10] interactions
(AV18=UIX). The high accuracy of the VMC wave func-
tions is well documented (see Refs. [11,12] and references
therein), as is the quality of the AV18=UIX Hamiltonian in
quantitatively accounting for a wide variety of light nu-
clei properties, such as elastic and inelastic electromag-
netic form factors [13], and low-energy capture re-
actions [14]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon mo-
mentum distributions and the resulting isospin depen-
dence of the latter remain valid, even if one uses a semi-

realistic Hamiltonian model. This will be shown explicitly
below.

The double Fourier transform in Eq. (1) is computed by
Monte Carlo (MC) integration. A standard Metropolis
walk, guided by j JMJ

!r1; r2; r3; . . . ; rA"j2, is used to sam-
ple configurations [12]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj, is
used to compute the Fourier transform. Instead of just
moving the  0 position (r012 and R0

12) away from a fixed
 position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

 !TMT
!q;Q" # A!A$ 1"

2!2J% 1"
X
MJ

Z
dr1dr2dr3 & & & drAdxdX y

JMJ
!r12 % x=2;R12

%X=2; r3; . . . ; rA"e$iq&xe$iQ&XPTMT
!12" JMJ

!r12 $ x=2;R12 $X=2; r3; . . . ; rA": (3)

Here the polar angles of the x and X grids are also sampled
by MC integration, with one sample per pair. This proce-
dure is similar to that adopted most recently in studies of
the 3He!e; e0p"d and 4He! ~e; e0 ~p"3H reactions [15] and has
the advantage of very substantially reducing the statistical
errors originating from the rapidly oscillating nature of the
integrand for large values of q and Q. Indeed, earlier
calculations of nucleon and cluster momentum distribu-
tions in few-nucleon systems, which were carried out by
direct MC integration over all coordinates, were very noisy
for momenta beyond 2 fm$1, even when the random walk
consisted of a very large number of configurations [2].

The present method is, however, computationally inten-
sive, because complete Gaussian integrations have to be
performed for each of the configurations sampled in the
random walk. The large range of values of x and X required
to obtain converged results, especially for 3He, require
fairly large numbers of points; we used grids of up to 96
and 80 points for x and X, respectively. We also sum over
all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q # 0,
corresponding to nucleons moving back to back. The sta-
tistical errors due to the Monte Carlo integration are dis-
played only for the pp pairs; they are negligibly small for
the np pairs. The striking features seen in all cases are
(i) the momentum distribution of np pairs is much larger
than that of pp pairs for relative momenta in the range
1:5–3:0 fm$1, and (ii) for the helium and lithium isotopes
the node in the pp momentum distribution is absent in the
np one, which instead exhibits a change of slope at a
characteristic value of p ’ 1:5 fm$1. The nodal structure
is much less prominent in 8Be. At small values of q the
ratios of np to pp momentum distributions are closer to
those of np to pp pair numbers, which in 3He, 4He, 6Li,
and 8Be are, respectively, 2, 4, 3, and 8=3. Note that the np
momentum distribution is given by the linear combination

!TMT#10 % !TMT#00, while the pp momentum distribution
corresponds to !TMT#11. The wave functions utilized in the
present study are eigenstates of total isospin (1=2 for 3He,
and 0 for 4He, 6Li, and 8Be), so the small effects of isospin-
symmetry-breaking interactions are ignored. As a result, in
4He, 6Li, and 8Be the !TMT

is independent of the isospin
projection and, in particular, the pp and T # 1 np mo-
mentum distributions are the same.

The excess strength in the np momentum distribution is
due to the strong correlations induced by tensor compo-
nents in the underlying NN potential. For Q # 0, the pair
and residual (A$ 2) system are in a relative Swave. In 3He
and 4He with uncorrelated wave functions, 3=4 of the np
pairs are in deuteronlike T; S # 0; 1 states, while the pp,
nn, and remaining 1=4 of np pairs are in T; S # 1; 0
(quasibound) states. When multibody tensor correlations
are taken into account, 10%–15% of the T; S # 1; 0 pairs
are spin flipped to T; S # 1; 1 pairs, but the number of
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FIG. 1 (color online). The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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Tensor force responsible for dominant part of SRC and 
correlations are largely of pn pairs

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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Inclusive Electron Scattering from Nuclei

Two dominant and distinct 
processes 

Quasielastic from the nucleons in the nucleus

Inelastic (resonances) and DIS from 
the quark constituents of the 
nucleon.

�e
�e0

MA M⇤
A�1, ��k

�k
�k + �q, W2 = M2

Inclusive final state means no 
separation of two dominant processes

x > 1 x < 1

x  = Q2/(2mυ)
υ,ω=energy loss

y < 0 y > 0
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The two processes share the same initial state
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However they have very different Q2 dependencies

σei ∝ elastic (form factor)2 ≈ 1/Q4 W1,2 scale with ln Q2 dependence

n(k) =
Z
dE S(k, E)

pX

k1
k2

q

PA
PA - 1

p

Exploit this dissimilar Q2 dependence

The limits on the integrals are 
determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 
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3He

Spectral Function

Access to existing spectral functions!! 

n(k) =

∫
S(Es, k) dEs

probability to remove a nucleon leaving the residual 
system with energy ER = MA - m + E = (k2 +  MR2)1/2
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3He

Spectral Function

Strength is spread out in E, all of which must be integrated over to get n(k)

A ridge at approx E = k2/2/m reflects the correlation in the gs
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Q2 = 0.6 QES

DIS

Integration limits 
over spectral 
function
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Q2 = 1.5

Q2 = 1.5

Integration limits over 
spectral function

QES

DIS
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Q2 = 2.5

Q2 = 2.5 Integration limits over 
spectral function

Conclusion: SRC region and 
EMC region sample different 
part of the ground state

Conclusion: With increasing Q2, 
QES and DIS, at the same x, 
sample very similar parts of 
the ground state.

QES

DIS

e = 5.766, θ =18
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A dependence: higher internal momenta 
broadens the peak

But.... plotted against x, the width gets narrower with increasing 
q -- momenta greater than kf show up at smaller values of x (x > 
1) as q increases

∆ω =

√

("kf + "q)2 + m2
−

√

("kf +"q)2 + m2
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12C, 3.6, 16o

12C, 3.6, 30o

Inelastic contribution increases with Q2
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 We expect that as Q2 increases to 
see evidence  for x-scaling - and Q2 
independence.
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Figure 11: FC
2 (x) at Q2 = 5GeV 2. Free nucleon response folded with n(k). HF

(dot-dashed line) enhanced by correlations (solid line). L.Conci and M. Traini,

UTF 261/92.

XEMPT Meeting Donal Day

CdA, Day, Liuti, PRC 46 (1045) 1992

L. Conci and M. Traini, UTF 261/92. 
Il Nuovo Cimento Vol 106 A  1071 1993

Correlations are accessible in QES 
and DIS at large x (small energy 
loss)

Rozynek & Birse, PRC, 38  (2201) 1988
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Deuteron F(y) 
and 
calculations 
based on NN 
potentials 

Assumption:  scattering takes place from a quasi-free 
proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the 
momentum transfer:  y ≈ -q/2 + mν/q

F(y) =
�exp

(Z�p + N�n)
· K

SRC region, nucleons with k ≈ 500 MeV/c

 S(k,E=2.2MeV) = n(k)

n(p) = −

1

2πy

dF(y)

dy
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Convergence of F(y) at fixed y with Q2

NE3 Au data from SLAC
Q2max = 2.2

E02–019 Au data from JLAB
Q2max = 7.4

F(y) =
�exp

(Z�̃p + N�̃n)
· K

• PWIA  would demand convergence from below- growing integration over S(k,E)
• Final State Interactions cause F(y,q) to converge from above with increasing q
• FSI in higher Q2  data are diminished
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What role FSI?

658 H. Meyer-Hajduk et al. / Inclusive electron scairering 
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Fig. 11. Differential cross section of inclusive electron scattering from ‘He as function of the energy loss 

0 of the electron. Results of fig. 7 are repeated. Compared are theoretical predictions based on the two 

different models of sect. 3.2.1 and 3.2.2 for nucleonic structure functions in the region of pion production. 

The solid curve refers to the meson-theoretic model of sect. 3.2.2, the dashed curve to the phenomenologi- 

cal model of sect. 3.2.1. In contrast to the results of fig. 7 the nucleonic form factors are taken from ref. ‘“I. 
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D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. (18) and (19) describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of
hadrons other than protons and neutrons one has to re-
place wN

1 and wN
2 given by Eqs. (23) and (24) with the

inelastic nucleon structure functions extracted from the
analysis of electron-proton and electron-deuteron scat-
tering data (Bodek and Ritchie, 1981). The resulting IA
cross section can be written as in Eq. (6), the two nuclear
structure functions W1 and W2 being given by (Benhar
et al., 1997)

W1(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃) +
1
2

wp
2(|q|, ω̃)

m2

|k × q|2

|q|2

]
+ . . .

}
(35)

and

W2(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃)
q2

|q|2

(
q2

q̃2
− 1

)

+
wp

2(|q|, ω̃)
m2

(
q4

|q|4

(
Ek − ω̃

Ekω̃ − k · q
q̃2

)2

− 1
2

q2

|q|2
|k × q|2

|q|2

)]
+ . . .

}
, (36)

where the dots denote the neutron contributions.
Eqs. (35) and (36) are obtained using the prescription
of Eq. (26) (de Forest, 1983) to preserve gauge invari-
ance. Note that the standard expression (Atwood and
West, 1973), widely used in studies of nuclear effects in
deep inelastic scattering, can be recovered from the above
equations replacing ω̃ → ω and Ek → MA − ER.

As an example, Fig. 5 shows the quasi-elastic (dashed
line) and total (solid line) inclusive cross sections of uni-
form nuclear matter, at beam energy Ee = 3.595 GeV
and scattering angle θ = 30◦, evaluated using a phe-
nomenological fit of the nucleon structure functions wN

1
and wN

2 (Bodek and Ritchie, 1981) and the above men-
tioned spectral function (Benhar et al., 1989).

The data show that the transition from the quasi elas-
tic to the inelastic regime, including resonant and nonres-
onant pion production as well as deep inelastic processes,
is a smooth one, thus suggesting the possibility of a uni-
fied representation.

The approach based on NMBT and the IA yields a
good description of the measured cross section at energy
loss ω >∼ 1 GeV, corresponding to x <∼ 1.3 (note that in
the kinematics of Fig. 5 the top od the quasi free bump
corresponds to ω = ωQE ∼ 1.4 GeV). On the other hand,
the data at lower energy loss are largely underestimated.

FIG. 5 Inclusive electron scattering cross section at Ee =
3.595GeV and θ = 30◦. The data points represent the extrap-
olated nuclear matter cross section (Day et al., 1989) while
the solid and dashed lines show the results of IA calculations
carried out with and without inclusion of the inelastic contri-
butions, respectively (Benhar et al., 1991).

The failure of IA calculations to explain the measured
cross sections at ω % ωQE has long been recognized, and
confirmed by a number of theoretical studies, carried out
using highly realistic spectral functions (Benhar et al.,
1989; Ciofi degli Atti et al., 1992; Meier-Hajduk et al.,
1983), see e.g. fig.6. It has to be ascribed to FSI between
the struck nucleon and the spectator particles, that move
strength from the region of the quasi free bump to the
low ω tail. This mechanism will be analyzed in the next
Section.

FIG. 6 Inclusive electron scattering cross section at Ee =
7.26GeV and θ = 8◦ for 3He. The data points are from (Day
et al., 1979), the solid line shows the IA calculation based on
the 3He spectral function (Meier-Hajduk et al., 1983). Ap-
proximate values for the scaling variable x are indicated on
top.

In conclusion, NMBT and the IA provide a consistent
and computationally viable approach, yielding a quanti-
tative description of the data in both the quasi elastic
and inelastic regime, with the only exception of the re-
gion of very low energy loss. Theoretical studies in which

In (e,e’) the failure of IA calculations to explain dσ at small energy loss

Meier-Hadjuk NPA 395, 332 1983

In (e,e’p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

Some of this could be resolved by a 
rearrangement of strength in SE 

Old problem: real/complex optical potential. Real part generates a shift, 
imaginary part a folding of cs, reduction of qep.
Role of SRC on Lorentzian tail?? Off-shell effects on NN interaction??
Can they ever be neglected?
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•Large Violation of PWIA at 
low Q2

• scaling from above
• Once Q2 gets large, we 
see little Q2 dependence in 
the scaling

RAPID COMMUNICATIONS

CIOFI DEGLI ATTI AND MEZZETTI PHYSICAL REVIEW C 79, 051302(R) (2009)

FIG. 3. (Color online) The experimental scaling function (sym-
bols) for 4He, 12C, and 56Fe obtained from the experimental data
of Refs. [10,21]. The upper panel shows F A(q, Y = y) and the
lower panel F A(q, Y = yCW). The full, long-dashed, dashed, and
dotted curves represent the longitudinal momentum distributions
f A(Y ) = 2π

∫ ∞
|Y | n

A(k)kdk for 2H, 4He, 12C, and 56Fe, respectively,
calculated with realistic wave functions.

asymptotic behavior of the nuclear wave functions in configu-
ration space. This is fully confirmed in Fig. 3, which, moreover,
also shows that whereas FA(q, y) scales to a quantity that
strongly differs from the longitudinal momentum distribution,
FA(q, yCW) scales exactly to f A(yCW). This is even better
demonstrated in Fig. 4, where the effects of FSI are also
illustrated. The left panel shows that (i) scaling is violated
and approached from the top (which is clear signature of the
breaking down of the PWIA, which has to approach scaling
from the bottom [8]) and (ii) the Q2 dependence of the scaling
violation appears to be the same for the deuteron and complex
nuclei, a fact that has never been demonstrated before and
represents, in our opinion, a relevant finding. To better validate
point (ii), we have divided FA(Q2, yCW) by a constant CA, such
as to obtain FA(Q2, yCW)/CA " FD(Q2, yCW). The results
are shown in the right panel of Fig. 4; it can again be seen that
not only at high values of |yCW| do all scaling functions scale
in A, but, more importantly, the constants CA agree, within the

FIG. 4. (Color online) The scaling function F A(Q2, yCW) from
the lower panel of Fig. 3 plotted vsQ2 at fixed values of yCW (4He,
asterisks; 12C, triangles; 56Fe, squares). In the right panel the data
for 4He, 12C, and 56Fe have been divided by the constants C4 =
2.7, C12 = 4.0, and C56 = 4.6, respectively. The theoretical curves
refer to 2H and represent the PWIA results (full) and the results that
include the FSI (dashed), both obtained with the AV18 interaction
[20]. Scaling variables are in MeV/c.

statistical errors, with the theoretical predictions of Ref. [6], as
well as with the experimental results on the ratio R(xBj,Q

2) =
2σA

2 (xBj,Q
2)/AσD

2 (xBj,Q
2) [3]. The main findings of our

analysis can be summarized as follows: (i) at high values of
|yCW|( >∼200–300 MeV/c) the scaling function FA(Q2, yCW)
scales to the one of the deuteron, with scaling constants
CA in qualitative agreement with theoretical predictions and
other types of experimental analysis; this kind of A-scaling
is entirely due to the scaling of the momentum distributions,
nA(k) " CAnD(k), at k >∼ 1.5–2 fm−1, which can therefore be
investigated by yCW-scaling analysis of inclusive data, owing
to the direct link between the scaling function FA(Q2, yCW)
and the longitudinal momentum distributions; (ii) the FSI has
relevant effects on the scaling functions up to Q2 " 4–5 GeV2

but, most importantly and surprisingly, it exhibits a similar Q2

dependence in complex nuclei and in the deuteron; this has
neither been observed nor theoretically predicted previously;
in a forthcoming paper it will indeed be shown that the effects
of the FSI on the momentum distribution of a correlated
nucleon are similar in the deuteron and in a complex nucleus
(for preliminary results see Ref. [22]).
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Studies show that FSI are small at large Q2 and track 
the FSI in the deuteron

What role FSI?

Ciofi-Mezzetti,PhysRevC.79.051302
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a) the struck nucleon moves along 
a straight line with a constant 
velocity (eikonal approximation), 
and

 b) the spectator nucleons are 
seen by the fast struck particle 
as a collection of fixed scattering 
centers (frozen approximation)
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motion of the struck nucleon by the 
imaginary potential W

Imaginary part of 
optical potential

density

FSI in Correlated Glauber

Benhar et al.
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distribution function g(ri, rj) results in a strong quench-
ing of the tails and an enhancement of the peak of Fq,
leading to a significant suppression of FSI effects.

The effect of FSI is illustrated in Fig. 12, showing
the inclusive cross section of uniform nuclear matter
at a beam energy Ee = 3.595 GeV and a scattering
angle θ = 30◦, corresponding to momentum transfer
|q| ∼ 2 GeV/c. Comparison between theory and the

FIG. 12 Inclusive electron scattering cross section at Ee =
3.595 GeV and θ = 30◦. The data points represent the ex-
trapolated nuclear matter cross section (Day et al., 1989),
while the solid and dashed lines show the results obtained
including FSI effects, with and without taking into account
correlation effects. For comparison, the IA cross section is
also shown by the dot-dash line (Benhar et al., 1991).

data in Fig. 12 clearly show that at ω < 1.1 GeV, where
quasielastic scattering dominates6 and which correspond
to x > 1, x = Q2/2mω being the Bjorken scaling vari-
able, FSI effects are large and must be taken into account.
The results obtained within the CGA are in good agree-
ment with the data in the region ω > 800 MeV, i.e. for
x <

∼ 1.8, while at higher x the experimental cross sec-
tion is largely overestimated. The dashed line has been
obtained neglecting the effect of dynamical correlations
on the distribution function g(ri, rj). Comparison be-
tween the solid and dashed lines provides a measure of
the quenching of FSI due to NN correlations.

The ability of the CGA to provide a quantitative un-
derstanding of FSI in the region x < 2 is further illus-
trated in Fig. 13, showing the cross section ratio

R =
dσ(e +56Fe → e′ + X)

dσ(e +2H → e′ + X)

2

56
, (51)

at Ee = 3.595 GeV and θ = 25◦. Note that R of Eq. (51)
is only defined up to y ∼–700 MeV/c, corresponding to

6 In the kinematics of Fig. 12, inelastic processes only contribute
∼ 5% of the inclusive cross section at ω = 1.1 GeV, and become
negligibly small at lower ω.

FIG. 13 Ratios of inclusive cross sections of iron and deu-
terium at Ee = 3.595 GeV and θ = 25◦. Solid line: full cal-
culation; dashed line: IA calculation, neglecting FSI in both
iron and deuteron; dot-dash line: calculation carried out using
the approximate spectral function of Eq. (37) (Benhar et al.,
1995b).

x = 2, the kinematical limit for inclusive scattering off
an A=2 target (for the definition of y see Sec. VI).

The solid line in Fig. 13 corresponds to the full CGA
calculation, providing a good description of the experi-
ments over the whole range of y, whereas the IA results,
represented by the dashed line, lie well below the data
at y < −200 MeV/c (x > 1.5). For comparison, Fig. 13
also shows the results obtained using the approximate
spectral function of Eq. (37), which turn out to largely
overestimate the data at negative y.

Notwithstanding its success in describing the existing
inclusive data at large negative y, the CGA appears to
consistently overestimate FSI effects at larger −y. As the
validity of the eikonal approximation is well established
in the kinematical region apposite to scattering of few
GeV electrons, possible corrections to the CGA scheme
are likely to be ascribable either to modifications of the
NN scattering amplitude or to the inadequacy of the ap-
proximations leading to the convolution expression for
the cross section.

It has been pointed out (Benhar et al., 1991) that the
use of the free-space amplitude to describe NN scattering
in the nuclear medium may be questionable. Pauli block-
ing and dispersive corrections are known to be important
at moderate energies (Pandharipande and Pieper, 1992).
However, their effects on the calculated inclusive cross
section have been found to be small in the kinematical
region corresponding to |q| >

∼ 2 GeV/c, and decrease as
|q| increases (Benhar et al., 1995a). Corrections to the
amplitude associated with its extrapolation to off-shell
energies are also expected to be small at |q| > 2 GeV/c
(Benhar and Liuti, 1996).

Modifications of the free-space NN cross section may
also originate from the internal structure of the nucleon.

FSI, correlation effects

FSI

IA

NM at 3.595, 30o

4He at 3.595, 30o

Final State Interactions in CGA

Benhar et al. PRC 44, 2328

Benhar, Pandharipande, PRC 47, 2218

Benhar et al. PLB 3443, 47

CGA over estimates the FSI
Modifications of the free 
space NN scattering amplitude 
in the medium?

FSI has two effects: energy  shift and a 
redistribution of strength from QEP to 
the tails, just where correlation effects 
contribute.
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Rescattering depends on joint probability of finding the struck particle at 
position ri and a spectator at position rj 
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FIGURE 2. Spin-isospin averaged NN radial correlation function in isospin symmetric nuclear matter at uniform density 
po = 0.16 fm^ (see Eq.(l)). The solid line shows the result of the calculation of Ref. [4], based on a realistic model of nuclear 
dynamics, while the dashed line has been obtained including statistical correlations only. 

NUCLEAR MANY-BODY THEORY 

Nuclear models taking into account the effects of dynamical correlations are based on the paradigm of nuclear many-
body theory (NMBT), stating that the nucleus can be viewed as a collection of A point-like protons and neutrons, 
whose dynamics are described by the non relativistic hamihonian 

S^; ijk : (5) 
;>' k>j>i 

Pi and m being the momentum of the /-th nucleon and its mass, respectively. 
The phenomenological NN potential, Vy, is determined by fitting the observed properties of the two-nucleon system 

in both bound and scattering states, i.e. deuteron properties, low energy scattering parameters and ^^ 4000 precisely 
measured proton-proton and proton-neutron scattering phase shifts corresponding to energies up to pion production 
threshold [7]. It turns out to be strongly spin-isospin dependent and non central, and reduces to the one-pion-exchange 
potential predicted by Yukawa's theory at large separation distance. 

The inclusion of the three-nucleon potential, providing a small contribution to the ground state expectation values 
of the hamihonian, is required to account for the measured binding energy of the three-nucleon systems [8]. 

The many body Schrodinger equation associated with the hamihonian of Eq.(5) can be solved exactly, using 
stochastic methods, for nuclei with mass number^ < 12. The resulting energies of the ground and low-lying excited 
states are in excellent agreement with experimental data [9]. 

It has to be emphasized that the dynamics of NMBT are fully determined by the observed properties of exactly 
solvable system. As a consequence, they do not suffer from the uncertainties involved in many-body calculations, 
unavoidably requiring approximations. Once the nuclear hamihonian is determined, calculations of the properties of 
a variety of nuclear systems, ranging from deuteron to neutron stars, can be carried out without making use of any 
adjustable parameters. 

The main difficulty associated with the use of the hamihonian of Eq.(5) in a many-body calculation lies in the strong 
repulsive core of the NN force, which cannot be handled within standard perturbation theory. In the shell model this 
problem is circumvented replacing the interaction terms in Eq.(5) with a well behaved mean field, according to 

S Vijk^Y^Ui (6) 
}>i k>j>i 
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If density is 0, the motion is undamped

SRC suppress FSI 

Two-body density not uniformly distributed at ri = rj - nucleons are 
surrounded by a hole because of correlations
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culation indicates that the tails of the folding function are
properly predicted. Due to the folding effect, the value of
F(y) at the largest q is still significantly above the PWIA
value. To reach the PWIA at larger q, F(y) would have
to decrease another 40%.

—2
I I I I I I—

0

VI. CONCLUSIONS

In this paper we have tried to quantitatively under-
stand the response function of nuclear matter at high q.
Particularly, the low-omega cross section provides funda-
mental information on the short-range structure of the
nuclear matter wave function.
Realistic analyses of this interesting kinematical region

of the nuclear matter response could not be performed in
the past both for experimental and theoretical reasons.
Data for nuclear matter can only be obtained by measur-
ing the inclusive cross section for different complex nuclei
and using the same kinematical conditions. Such data be-
came available only recently [10,11]. The major theoreti-
cal difficulties consisted (i) in the microscopic evaluation
of the nuclear matter response in the high-q region,
where the struck nucleon and its FSI needs to be treated
relativistically, and (ii) in the consistent calculation of the
contribution of inelastic e —N scattering, which, at high
momentum transfer, is expected to be non-negligible even
in the low energy loss tail.
We present a calculation of the nuclear matter in-

clusive cross section based on the spectral function, in-
cluding the FSI, performed consistently for both the elas-
tic and the inelastic nucleon contributions. The spectral
function of nuclear matter has been calculated nonrela-
tivistically for a realistic N —N interaction by using corre-
lated basis function theory [14]. The struck nucleon is
treated relativistically and its FSI's are evaluated by gen-
eralizing the Glauber theory to the case of a relativistic
nucleon propagating in the same nuclear medium to
which it was bound before being struck by the electron.
This amounts to taking into account the fact that such a
nucleon, being a part of the ground state before the in-
teraction with the electron, experiences a nucleonic den-
sity pg (r) instead of p, where g (r) represents the XN dis-
tribution function. It has to be noted that such a feature
should never be disregarded when treating the FSI in
processes where an initially bound nucleon is knocked
out. In fact, it has an effect which is qualitatively similar
and quantitatively much larger than that of the color
transparency; the pair distribution function g (r) is very
small at small r and therefore the motion of the struck
nucleon is little damped at distances ~ 1 fm from where
it has interacted with the electron.
The sensitivity of the cross-section to g (r) is actually

quite pronounced. In Fig. 13 we show the inclusive cross
sections at 3.6 GeV, 25, calculated for both the normal
nuclear matter g(r) and a modified g„d(r). In g„d(r) we
have artificially increased by 20% the hole in g (r) around
r =0, due to short range correlations, by simply expand-
ing the radial scale. The efFect on the cross section is
significant. This sensitivity to g (r) is most welcome, as in
most observables the effects of N —N correlations are hid-
den and indirect. This sensitivity provides a strong

5~ 10

1O'
0.4 0.6 O.B

energy loss ~ (GeV)

FIG. 13. Sensitivity of the inclusive cross section to the X-N
pair distribution function at @=3.6 GeV and 0=25 .

motivation to study (e, e ) at large q in more detail in the
future.
Corrections to the FSI due to color transparency are

easily included in the correlated Glauber treatment. It
has been found that they are indeed necessary for a better
agreement with the data. Both the elastic and inelastic
scattering of the electron by an off-shell nucleon has been
described by using the full nuclear matter spectral func-
tion and the prescription proposed by de Forest [13] to
treat the off-shell elastic e-nucleon cross section.
The results obtained show overall a good agreement

with the data. For all the kinematical cases studied, the
PWIA reproduces the measured cross sections near and
above the top of the quasielastic peak, whereas it un-
derestimates them at lower energy loss, where the
theoretical curves lie a factor of 3—10 below the data.
The main contribution to the FSI comes from the imagi-
nary part of the optical potential. Including it by using
the correlated Glauber theory plus color transparency
provides a satisfactory description of the data. This im-
plies, on one side, that both the spectral function and the
treatment of the nucleon inelastic contributions used in
this work are quite realistic and, on the other side, that
FSI's are quite large at low co.
We note that the present calculations involve two main

approximations: (i) the use of de Forest's method to esti-
mate the oF-shell electron-nucleon cross sections, and (ii)
the use of the first-order-correlated Glauber approxima-
tion to estimate the FSI efFects. Both these approxima-
tions appear to be reasonable, but it is desirable to ascer-
tain their accuracy quantitatively. Data at higher values
of q and cu will also be helpful in studying color tran-
sparency. Exclusive (e, e'p) measurements in the region

x = 3 x = 2.0
x = 1

Sensitivity to g(r)

Q2 modest by 
comparison to new 
data

Ratios, to come, are 
between x = 1.5 
and 2.
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Issues about CGA FSI
• Extreme sensitivity to hole size
• On-shell cross sections: nucleon is off-shell by in E by
  ℏ/∆t = ℏ W, modification of NN interaction

• total cross section?
• Unitarity?   Folding function is normalized to one.
• Role of momentum dependent folding function (Petraki et 
al, PRC 67 014605, 2003) has lead to a quenching of the 
tails. 
•Comparison to data with this new model for a range of A 
and  Q2 be very useful

 “The discrepancy with the measured cross sections increases as q 
increases, while the suppression of FSI’s due to the momentum dependence 
of the folding function appears to be larger at lower momentum transfer.

 A different mechanism, leading to a quenching of FSI’s and exhibiting the 
opposite momentum-transfer dependence still seems to be needed to 
reconcile theory and data.” Petraki et al, PRC 67 014605
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Why might a ‘different mechanism’ be necessary.  Why are 
the cross sections too large? Arrington, Higinbotham, Rosner and Sargsian, 

arXiv:1104.1196v3[nucl-ex]
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Figure 4: The dependence of the threshold value of Q2 for inelastic processes in inclusive
A(e, e′)X reactions to the mass number of nuclei, A at different values of Bjorken x.

Figure 5: Diagrams contributing to inclusive A(e, e′)X reactions: (a) plane wave impulse
approximation, (b) elastic and (c) inelastic final state interaction contributions.

expressed through the sequential diffractive elastic and inelastic rescatterings
of nucleons in the nuclei, for which one can apply the optical theorem in the
form Im{fel

NN(t = 0)} = σtot
NN with fel

NN(t) = σtot(i + α)e
B

2
t. Such an ap-

proach within Regge theory of diffractive scattering for inclusive processes was
discussed in Ref. [79], which resulted to well known Abramovsky-Kanchelly-
Gribov (AGK) cutting rules. Similar rules have been discussed within eikonal
approximation by Bertocchi and Treleani [80] for inclusive hadron-nucleus scat-
tering. They demonstrated that including only elastic rescattering amplitudes
(Glauber theory) in the inclusive scattering violates the unitarity condition for
the nuclear scattering amplitude, which is restored with the inclusion of the in-
elastic rescatterings. The main essence of these cutting rules is that, because of
the unitarity relations between inelastic and elastic NN scattering amplitudes,
it is necessary to account for the cancellations between rescattering amplitudes.

The qualitative aspects of the application of AGK type cutting rules can
be seen from Fig. 6, in which the inclusive cross section is defined by the sum
of the four terms, where Fig. 6(b) represents the interference between PWIA

17

Calculation of (c) is nearly impossible - too many channels are involved

When eikonal theorem valid FSI can be 
expressed as a series of diffractive 
elastic and inelastic rescatterings

Im [fel
NN

(t = 0)] = �

total

AGK Cutting rules, Bertocchi and Treleani 
Using only elastic rescattering amplitudes (Glauber theory) violates 
unitarity, restored by including inelastic rescatterings. There are 
cancelations between the amplitudes

Apply optical theorem

Abramovsky-Kanchelly-Gribov 

Inclusive hadron-nucleus scattering 
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Why might a ‘different mechanism’ be necessary.  Why are 
the cross sections too large? Arrington, Higinbotham, Rosner and Sargsian, 
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AGK Cutting rules, Bertocchi and Treleani

Using only elastic rescattering amplitudes (Glauber theory) violates 
unitarity, restored by including inelastic rescatterings. There are 
cancelations between the amplitudes

Sum of (c) elastic and (d) inelastic cancels half of interference term (b)

and elastic rescattering amplitude and in the eikonal regime is predominantly
destructive. The main effect of the application of AGK rules in the sum of the
terms in Fig. 6 is that the sum of the squares of elastic (c) and inelastic (d)
terms cancels half of the interference term (b) resulting to the net contribution
of diagrams as given in Fig. 7. The latter is related to the imaginary part of
the forward nuclear Compton scattering [81].

Figure 6: The main terms contributing to the cross section of inclusive A(e, e′)X cross section
in quasi-elastic kinematics.

The above discussion illustrates the potential importance of maintaining uni-
tarity through the inclusion of inelastic rescattering diagrams and also shows
that inclusion of only the elastic rescatterings in the FSI (Glauber theory) can
overestimate the final state interaction contribution. This is seen in Ref. [69]
where authors used the correlated Glauber approximation to calculate the cross
section of inclusive A(e,e′)X scattering. While they obtained reasonably good
description of the data at small Q2, their FSI calculation significantly overesti-
mated the data at largeQ2 (where according to Fig. 4 inelastic processes become
important). In Ref. [69] the agreement with the data is achieved only after the
inclusion of a large color transparency effect.

Figure 7: The imaginary part of the forward nuclear Compton scattering amplitude.

As mentioned above, the FSI in the inclusive A(e,e’)X reaction can be cal-
culated through the imaginary part of the forward nuclear virtual Compton
scattering amplitude (Fig. 7). Ref. [44] used these amplitudes to analyze the
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Quantitative 
results are 
promised
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In the region where correlations 
should dominate, large x,

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. 
It should fall rapidly with j as nuclei are dilute.
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Assumption is that in the ratios, 
off-shell effects and FSI largely 
cancel.

CS Ratios and SRC

�2(x, Q2) = �eD(x, Q2) and �j(x, Q2) = 0 for x > j.

aj(A) is proportional
to probability of finding
a j-nucleon correlationF&S
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Selection by  kinematics

x

p m
in
 (
Ge

V/
c)

0.5

4.0

Appearance of plateaus is A dependent.
Kinematics: heavier recoil systems do not require as much energy to balance momentum 
of struck nucleon - hence pmin for a given x and Q2 is smaller.
Dynamics: mean field part in heavy nuclei persist in x to larger values

Have to go to higher x or Q2 to insure scattering is not from 
mean-field nucleon
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FIG. 4: Cross section (A/3He) ratios at large x as measured in CLAS.

state interactions, due to the different mix of nn, np, and pp correlations in non-isoscalar nuclei.
However, there are calculations indicating that there are significant final state interactions that do
not vanish rapidly as Q2 increases, and which do not cancel in the target ratios [19] (i.e. do not come
from short range configurations that are identical in all nuclei). This calculation indicates that the
FSI (when including inelastic channels) has a very weak Q2 dependence and will persist, challenging
our interpretation of the impulse approximation analysis. In addition, it predicts that the FSI effects
will increase the x > 1.5 cross section in iron by approximately a factor of ten, and that even in the
ratio of iron to deuterium, there is a factor of five effect from these FSIs. An important portion of
the proposed measurement is the ability to test these precisions of FSIs by extracting absolute cross
sections for x > 1.5 on a variety of few-body (and heavy) nuclei over a range of Q2.

For the deuteron, which is dominated by the simple two-body breakup assumed in an impulse
approximation analysis, we can extract the nucleon momentum distribution from the inclusive data
without the complications caused by neglecting the separation energy of the full spectral function.
The momentum distribution for the deuteron as extracted from experiment E89-008 is shown in
Fig. 5 [3]. The normalization of the extracted momentum distribution is consistent with unity,
and the high momentum components are in good agreement with calculations based on modern
two-body nucleon–nucleon potentials. This sets limits on the impact of FSI, even in the region
dominated by short range correlations, indicating that the scattering is consistent with the impulse
approximation and that final state interactions much smaller than those observed in coincidence
A(e,e’p) measurements, or those predicted in some calculations. In the proposed measurements, we
will extract absolute cross sections for 2H, 3He, and 4He, not available for the CLAS results, which
will allow us to set limits on the size (and A dependence) of final state interactions.

The extension of these ratio measurements to higher Q2 will allow us to better test the x and Q2

CLAS data
Egiyan et al., PRL 96, 
082501, 2006

α2N ≈20%
α3N ≈1%

Ratios, SRC’s and Q2 scaling 2
A
�A
�D

= a2(A); (1.4 < x < 2.0)
FSDS, Phys.Rev.C48:2451-2461,1993

aj(A) is probability of finding a j-
nucleon correlation

4He/2H

Fe/2H
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E02-019, PRL 108, 092502 (2012), Fomin et al.

6

pp, np, and nn configurations. If we integrate the nor-354

malized ρpp
2 (r) up to r = 1.7 fm, we find the probability355

that a proton is within 1.7 fm (twice the RMS radius of356

a nucleon) of another proton. Thus, we define a measure357

of the relative pair overlap between nucleons by taking358

∫ ∞

0

W (r)ρNN
2 (r)d3r (3)

for the nn, np, and pp pairs, where W (r) is a cutoff func-359

tion which is used to evaluate the contribution at short360

distances. We obtain an average overlap parameter for361

the nucleus by weighting the pair overlap parameter by362

the potential numbers of pairs of each type as well as the363

e − p and e − n cross sections. If W(r) is a step function364

that cuts off at r = R0, then this approximately repre-365

sents the probability that the struck nucleon was within366

R0 of its nearest neighbor. We take this measure of over-367

lap with R0 = 1.7 fm and apply an overall scaling factor368

to compare this to the EMC effect as solid triangles in369

Fig. 6. Because the amount of overlap between nucleons370

decreases with the separation, W (r) can be replaced with371

a cutoff function which enhances the effect when the nu-372

cleons are extremely close together. We take W (r) to be373

a gaussian centered at r = 0 with a width of 1 fm and374

plot the results as hollow squares in Fig. 6. Both of these375

simple calculations of overlap yield a good qualitative re-376

production of the behavior for light nuclei, which is not377

terribly sensitive to the choice of the cutoff function or378

the exact scale of the cutoff parameter.379

To test more definitively the notion that the EMC ef-380

fect depends on “local density”, additional data on light381

nuclei, especially those with significant cluster strcuture,382

are required. Such studies are planned as part of the pro-383

gram after the Jefferson Lab 12 GeV Upgrade [53]. For384

all of the light nuclei, an average overlap parameter can385

be obtained from the ab initio GFMC calculations. This386

provides realistic input of the distribution of nucleons in387

these nuclei, although the quantitative evaluation of the388

overlap parameter does depend on the somewhat arbi-389

trary choice of the cutoff function in Eq. (3). One can390

also use measurements of short-range correlations in nu-391

clei as an observable which is also sensitive to the relative392

contribution from short-distance configurations in nuclei.393

This is one possible interpretation of the correlation ob-394

served between SRC measurements and the EMC effect,395

and we will present this in detail after examining the A396

dependence of the short-range correlation measurements.397

NUCLEAR DEPENDENCE OF SHORT RANGE398

CORRELATIONS399

Much as DIS isolates scattering from quasi-free quarks,400

quasielastic scattering isolates incoherent scattering from401

the protons and neutrons in the nucleus. This allows402

us to study the momentum distributions of the bound403

nucleons [54]. Inclusive electron scattering can be used404

to isolate contributions from high-momentum nucleons405

in SRCs by going to x > 1 kinematics [2, 10, 54].406

In the QE regime, we can decompose the cross section407

into contributions from single-nucleon scattering (mean-408

field independent particle contributions) and scattering409

from 2-nucleon, 3-nucleon, etc... correlations [2] via:410

σ(x, Q2) =
A

∑

j=1

A
1

j
aj(A)σj(x, Q2) (4)

where σj(x, Q2) = 0 at x > j and the aj(A)’s are pro-411

portional to the probabilities of finding a nucleon in j–412

nucleon correlation. In the case of the electron–deuteron413

cross section, σ2 will be dominated by contributions from414

2N correlations for x >1.4, where the nucleon momentum415

is well above kF and the mean field contribution has died416

off. Then, a2 can be closely related to the number of 2N417

correlations in the nucleus (per nucleon) relative to that418

of the deuteron. Hence Eq. (4) expresses the fact that in419

the region j < x < j + 1 the contribution of j−nucleon420

SRC dominates. This result is in reasonable agreement421

with numerical calculations of the nuclear spectral func-422

tions [55, 56].423

FIG. 7: Per nucleon cross section ratios for 3He and 12C mea-
sured at JLab [7] with a 5.766 GeV electron beam at a scat-
tering angle of 18◦. In the regions dominated by 2N SRCs
(denoted by a straight line fit) the ratios becomes indepen-
dent of x. The ratio grows with mass number A.

Since nuclei are dilute, aj " aj+1, Eq. (4) suggests424

scaling relations between scattering off the lightest nuclei425

(A = 2, for example) and heavier nuclei:426

σA(x, Q2)/A

σD(x, Q2)/2
= a2(A) |1.4<

∼x≤2 (5)

The scaling of the cross section ratios has been estab-427

lished, first at SLAC [2] and at Jefferson Lab [3, 4]. A428

extractions of nðkÞ. We can avoid this model dependence
by making comparisons between nuclei in a region where
the kinematics limit the scattering to k > kF [5,26]. If these
high-momentum components are related to two-nucleon
short-range correlations (2N-SRCs), where two nucleons
have a large relative momentum but a small total momen-
tum due to their hard two-body interaction, then they
should yield the same high-momentum tail whether in a
heavy nucleus or a deuteron.

The first detailed study of SRCs combined data interpo-
lated to fixed kinematics from different experiments at
SLAC [26]. A plateau was seen in the ratio ð!A=AÞ=
ð!D=2Þ that was roughly A independent for A # 12, but
smaller for 3He and 4He. Measurements from Hall B at
JLab showed similar plateaus [27,28] in A=3He ratios for
Q2 # 1:4 GeV2. A previous JLab Hall C experiment at
4 GeV [11,29] measured scattering from nuclei and deu-
terium at larger Q2 values than SLAC or CLAS, but had
limited statistics for deuterium. While these measurements
provided significant evidence for the presence of SRCs,
precise A=D ratios for several nuclei, covering the desired
range in x and Q2, are limited.

Figure 2 shows the cross section ratios from E02-019 for
the "e ¼ 18% data. For x > 1:5, the data show the expected
plateau, although the point at x ¼ 1:95 is always high
because one is approaching the kinematic threshold for
scattering from the deuteron at x ¼ MD=Mp & 2. This
rise was not observed in previous measurements; the
SLAC data did not have sufficient statistics to see the
rise, while the CLAS measurements took ratios of heavy
nuclei to 3He, where the cross section does not go to zero
for x ! 2. Table I gives the ratio in the plateau region for a
range of nuclei at all Q2 values where there were sufficient
large-x data. We apply a cut in x to isolate the plateau
region, although the onset of scaling in x varies somewhat
withQ2. The start of the plateau is independent ofQ2 when
taken as a function of #2n,

#2n ¼ 2' $' qþ 2MN

2MN
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1'M2

N=W
2
2n

q
Þ; (3)

(W2
2n ¼ 4M2

N þ 4MN$'Q2) which corresponds to the
light-cone momentum fraction of the struck nucleon as-
suming that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [26]. We
take the ratio for xmin < x< 1:9, such that xmin corre-
sponds to a fixed value of #2n.
There are small inelastic contributions at the higher Q2

values, even for x > 1:5. A simple convolution model [7]
predicts an inelastic contribution of 1%–3% at 18% and
5%–10% at 26%. This may explain the small systematicQ2

dependence in the extracted ratios seen in Table I. Further
results on the role of SRCs will be based on the 18% data,
with the inelastic contributions subtracted (including a
100% model dependence uncertainty), to minimize the
size and uncertainty of the inelastic correction.
Calculations of inclusive FSIs generally show them to

decrease rapidly with increasing Q2. However, the effects
can still be important at high Q2 for x > 1. While at least
one calculation suggests that the FSI is A dependent [30],
most indicate that the FSI contributions which do not
decrease rapidly with Q2 are limited to FSI between the
nucleons in the initial-state SRC [3,5,26,31–33]. In this
case, the FSI corrections are identical for 2N-SRCs in the
deuteron or heavy nuclei, and cancel when taking the
ratios. Our y-scaling analysis of the deuteron cross sections
(Fig. 1) suggests that the FSIs are relatively small for the
deuteron, and the ratios shown in Table I have only a small
Q2 dependence, consistent with the estimated inelastic
contributions, supporting the standard assumption that
any FSIs in the plateau region largely cancel in taking
the target ratios.
In the absence of large FSI effects, the cross section ratio

!A=!D yields the strength of the high-momentum tail of
the momentum distribution in nucleus A relative to a
deuteron. If the high-momentum contribution comes
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FIG. 2. Pernucleon cross section ratios vs x at "e ¼ 18%.

TABLE I. rðA;DÞ ¼ ð2=AÞ!A=!D in the 2N correlation re-
gion (xmin < x< 1:9). We take a conservative value of xmin ¼
1:5 at 18%, corresponding to #2n ¼ 1:275, and use this to set xmin

at 22% and 26%. The last column is the ratio at 18% after
subtracting the inelastic contribution as estimated by a simple
convolution model (and applying a 100% systematic uncertainty
on the correction).

A "e ¼ 18% "e ¼ 22% "e ¼ 26% Inel. sub.

3He 2:14) 0:04 2:28) 0:06 2:33) 0:10 2:13) 0:04
4He 3:66) 0:07 3:94) 0:09 3:89) 0:13 3:60) 0:10
Be 4:00) 0:08 4:21) 0:09 4:28) 0:14 3:91) 0:12
C 4:88) 0:10 5:28) 0:12 5:14) 0:17 4:75) 0:16
Cu 5:37) 0:11 5:79) 0:13 5:71) 0:19 5:21) 0:20
Au 5:34) 0:11 5:70) 0:14 5:76) 0:20 5:16) 0:22
hQ2i 2:7 GeV2 3:8 GeV2 4:8 GeV2

xmin 1.5 1.45 1.4
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entirely from quasielastic scattering from a nucleon in an
n-p SRC at rest, then this ratio represents the contribution
of 2N-SRCs to the nuclear wave function, relative to the
deuteron, R2NðA;DÞ. However, the distribution of the high-
momentum nucleons in the SRC will be modified by the
motion of the pair in the nucleus. We use the convolution
calculation and realistic parameterizations for the c.m.
motion and for SRC distributions from Ref. [33] to calcu-
late this smearing and find that it generates an enhance-
ment of the high-momentum tail of approximately 20% for
Iron and roughly scales with the size of the total pair
momentum. To obtain R2NðA;DÞ, we use the inelastic-
subtracted cross section ratios and remove the smearing
effect of the center-of-mass (c.m.) motion of the 2N-SRC
pairs. The 20% correction for iron is scaled to the other
nuclei based on the A dependence of the pair motion.
To first order, the c.m. motion ‘‘smears out’’ the high-
momentum tail (which falls off roughly exponentially),
producing an overall enhancement of the ratio in the pla-
teau region. In a complete calculation, the correction can
also have some small x dependence in this region which
can potentially distort the shape of the ratio. However, both
the data and recent calculations [19,34,35] suggest that any
x dependence of the ratio in this region is relatively small.
When removing the effect of the c.m. motion, we apply an
uncertainty equal to 30% of the calculated correction (50%
for 3He) to account for the overall uncertainty in calculat-
ing the smearing effect, the uncertainty in our assumed A
dependence of the effect, and the impact of the neglected x
dependence on the extracted ratio.

After correcting the measured ratios for the enhance-
ment due to motion of the pair, we obtain R2N , given in
Table II, which represents the relative likelihood of a
nucleon in nucleus A to be in a high relative momentum
pair compared to a nucleon in the deuteron. It also
provides updated results from previous experiments after
applying c.m. motion corrections and removing the#15%

‘‘isoscalar’’ correction applied in the previous works. This
correction was based on the assumption that the high-
momentum tails would have greater neutron contributions
for N > Z nuclei, but the dominance of isosinglet pairs
[2,36] implies that the tail will have equal proton and
neutron contributions. The CLAS ratios are somewhat
low compared to the other extractions, which could be a
result of the lower !min values. If !2n is not high enough to
fully isolate 2N-SRCs, one expects the extracted ratio will
be somewhat smaller. Note that the previous data do not
include corrections or uncertainties associated with inelas-
tic contributions or Coulomb distortion, which is estimated
to be up to 6% for the CLAS iron data and similar for the
lower Q2 SLAC data.
Previous extractions of the strength of 2N-SRCs found a

slow increase of R2N with A in light nuclei, with little
apparent A dependence for A $ 12. The additional correc-
tions applied in our extraction of 2N-SRC contributions do
not modify these basic conclusions, but these corrections,
along with the improved precision in our extraction, fur-
nishes a more detailed picture of the A dependence. In a
mean-field model, one would expect the frequency for two
nucleons to be close enough together to form an 2N-SRC
to be proportional to the average density of the nucleus [3].
However, while the density of 9Be is similar to 3He, yet its
value of R2N is much closer to that of the denser nuclei 4He
and 12C, demonstrating that the SRC contributions do not
simply scale with density. This is very much like the
recently observed A dependence of the EMC effect [37],
where 9Bewas found to behave like a denser nucleus due to
its significant cluster structure. It seems natural that cluster
structure would be important in the short-range structure
and contribution of SRCs in nuclei, but this is the first such
experimental observation.
For A=3He ratios above x ¼ 2, one expects the 2N-SRC

contributions to become small enough that 3N-SRCs may
eventually dominate. 2N-SRCs are isolated by choosing x
and Q2 such that the minimum initial momentum of the
struck nucleon is larger than kF [26], but it is not clear what
kinematics are required to sufficiently suppress 2N-SRC
contributions [5], and larger Q2 values may be required to
isolate 3N-SRCs. Figure 3 shows the 4He=3He ratio at
"e ¼ 18&, along with the CLAS ratios [28] (leaving out
their isoscalar correction). The ratios in the 2N-SRC region
are in good agreement. Even with the large uncertainties, it
is clear that our ratio at x > 2:25 is significantly higher than
in the CLAS measurement. On the other hand, a similar
analysis using preliminary results from SLAC (Fig. 8.3
from Ref. [31]) found a 4He=3He cross section ratio that
is independent ofQ2 between 1.0 and 2:4 GeV2 and falls in
between our result and the CLAS data. A recently com-
pleted experiment [38] will map out the x and Q2 depen-
dence in the 3N-SRC region with high precision.
In summary, we have presented new, high-Q2 measure-

ments of inclusive scattering from nuclei at x > 1. We

TABLE II. Extracted values of R2NðAÞ from this work and the
SLAC [26] and CLAS [28] data, along with the c.m. motion
correction factor FCM we apply: R2NðAÞ ¼ rðA;DÞ=FCM. The
SLAC and CLAS results have been updated to be consistent with
the new extraction except for the lack of Coulomb correction and
inelastic subtraction (see text for details).

A R2N (E02-019) SLAC CLAS FCM

3He 1:93' 0:10 1:8' 0:3 ( ( ( 1:10' 0:05
4He 3:02' 0:17 2:8' 0:4 2:80' 0:28 1:19' 0:06
Be 3:37' 0:17 ( ( ( ( ( ( 1:16' 0:05
C 4:00' 0:24 4:2' 0:5 3:50' 0:35 1:19' 0:06
Cu(Fe) 4:33' 0:28 (4:3' 0:8) (3:90' 0:37) 1:20' 0:06
Au 4:26' 0:29 4:0' 0:6 ( ( ( 1:21' 0:06
hQ2i #2:7 GeV2 #1:2 GeV2 #2 GeV2

xmin 1.5 ( ( ( 1.5
!min 1.275 1.25 1.22–1.26
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FSI and plateaus
Emphatic arguments have been 
made that these ratio values are an 
artifact  - can not be interpreted 
as the ratio of correlated in 
strength in heavy to light nuclei

The claim is that the plateaus, 
remarkable as they appear, are a result 
of FSI (and the role of SRC in FSI)

•If the nuclear medium affects via Initial State 
Interaction the correlated 2-nucleon system --- 
it does as the high-k tail is (say) 4 times 
higher in a nucleus than in the deuteron --- 
then the nuclear medium also increases the 
FSI by a comparable factor.
• Glauber-type calculations the FSI effects are 
explicitly proportional to the nuclear density.

50 0. Benhar et al. /Physics Letters B 343 (1995) 47-52 

x 

Fig. 2. Ratios of inclusive cross sections of nuclear matter and 

deuterium at 3.6 GeV and 25’. 

ious ingredients. The dashed curve corresponds to the 

approximation used in Ref. [5] where the spread of 

P( k, E) as a function of E is neglected, i.e. P( k, E) 

is replaced by p( k)6(k2/2m - E). The dash-dotted 

curve in Fig. 1 corresponds to the case where the FSI 

of the recoil nucleon is neglected, as done in Refs. 

[ 651. Contrary to the assumption of [ 51, the FSI in 

the nucleus and the deuteron do not cancel; the N- 

N distribution functions of the deuteron and heavier 

nuclei differ, and the FSI with the (A - 2) spectator 

nucleons is not negligible. For a quantitative under- 

standing of the cross section ratios, it is clearly im- 

perative to use both a realistic P (k, E) and a realistic 

description of the FSI. 

__ full CGA 

eo 
2 

- - high-k x0.5 

2 

f 4 

While, at k significantly above kF, the ratio of iron 

and deuteron momentum distribution p(k) is indeed 

constant, = 3.8, the numerical value of the calculated 

cross section ratio at x > 1.4 does not appear to relate 

to this feature in a direct way; the average calculated 

cross section ratio is E 5.2 f 0.2. The effects of FSI 

and the spread of P (k, E) in E are too large to allow 

for a direct comparison between the two quantities. 

As mentioned above, our calculation also includes 

the contributions due to inelastic scattering on the nu- 

cleon. These contributions are small for x > 1, but 

dominate the cross section ratios at x < 1. 

We have calculated the cross section ratios for the 

same kinematics and all nuclei where similar data are 

available (A = 4, 12, 27, 56, 197), and find similarly 

good agreement. In Fig. 2 we show as an illustration 

the data and calculation for infinite nuclear matter, 

where we have determined the experimental nuclear 

matter to deuteron ratios using the nuclear matter cross 

sections of Ref. [25] and the deuteron cross sections 

of Refs. [ 12-141, in a way analogous to the one used 

by Day [ 51. For nuclear matter we find even somewhat 

better agreement with the data. 

In Fig. 3 we show the comparison between experi- 

ment and calculation for lower and higher values of the 

momentum transfer. The agreement of calculation and 

data is similar. At even lower q (q* < 0.8 (GeV/c)2) 

the agreement gets worse, similar to what was found 

in Ref. [ 1  ]  for the cross sections. This degradation is 

presumably due to the treatment of FSI, as Glauber 

10 

q2 = I.2 (G&'/c)~ 

8- 

_ ~ full CGA 

Fig. 3. Ratios of inclusive cross sections of iron and deuterium at 3.6 GeV and 30° (a) and 20’ (b). Full calculation (solid line), 

calculation with the correlated part of P(k, E) reduced by a factor of two (dash-dotted). 

It would be useful to have new 
calculations over a range of A and Q2.
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Are plateaus an artifact of complicated FSIs which coincidently relates 
the EMC to the SRC? Very unlikely.

BRIEF REPORTS PHYSICAL REVIEW C 85, 047301 (2012)
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FIG. 1. (Color online) The slope of the EMC effect for 0.35 !
xB ! 0.7 plotted vs a2(A/d), the SRC scaling factor (the relative
amount of NN -SRC pairs), in a variety of nuclei. The uncertainties
include both statistical and systematic uncertainties added in quadra-
ture. The values of a2(A/d) are taken from Fomin et al. [18] as
published except for the SRC-pair center-of-mass motion corrections.
The fit parameter, a = −0.084 ± 0.004, is the intercept of the line
and also the negative of the slope of the line.

Following Ref. [8], the value a2(A/d) = 0 corresponds to
the limit of free nucleons with no SRC. If we extrapolate the
linear fit to this point, this should give us the EMC ratio for
a free (unbound) pn pair to the deuteron, the so-called in-
medium correction (IMC) effect. The IMC effect then equals
the negative of the fitted EMC-SRC slope. This value ranges
from |dRIMC/dx| = 0.079 ± 0.006 to 0.084 ± 0.004 for the
different data sets with the different corrections (excluding the
c.m. motion correction). If we include the SRC-pair center-
of-mass motion correction, then the linear fit is still excellent.
However, the slope and hence the intercept increases by about
20% to 0.106 ± 0.006.

Since the EMC effect is linear for 0.3 ! xB ! 0.7, we have
(also following Ref. [8])

σd

σp + σn

= 1 − a(xB − b),

where σd and σp are the measured DIS deuteron and proton
cross sections, σn is the unmeasured free-neutron cross section,
a = |dRIMC/dx| ≈ 0.08, and b = 0.31 ± 0.04 is the average
value of xB where the EMC effect is unity (i.e., where the per-
nucleon cross sections are equal). Evaluating this at xB = 0.7
gives the ratio of the free pn cross section to the bound pn

(deuteron) cross section, which ranges from 1.032 ± 0.004 to
1.034 ± 0.004 for the different data sets and corrections (again
excluding the c.m. motion correction). If we include the c.m.
motion correction, then this ratio changes to 1.043 ± 0.005.

The agreement of the slope of the EMC-SRC correlation,
and therefore of the deuteron IMC effect at xB = 0.7, among
all combinations of data sets and corrections is a clear
indication of the robustness of the EMC-SRC correlation. This
also indicates that the deuteron IMC effect and the free-neutron
structure function extracted in Ref. [8] and used in Ref. [19] do
not change due to the new data and/or analysis. If the center-
of-mass motion correction is included, then the linearity of the
EMC-SRC relation improves slightly and the deuteron IMC
effect increases by about 20% to dRIMC/dx = 0.106 ± 0.006.

Conclusions and outlook. New higher-precision data [18]
strengthen the phenomenological correlation between the
strength of the EMC effect and the relative amount of SRC-
correlated NN pairs in a nucleus [8]. The new measurements
are consistent with the SRC scaling factors for 9Be and 197Au
that were predicted based on this EMC-SRC correlation.
Different corrections for the SRC cross-section ratio were
examined and all were shown to be consistent with a linear
correlation between the strength of the EMC effect and the
relative amount of SRC-correlated NN pairs in nuclei. The
linearity of the EMC-SRC correlation, regardless of the exact
corrections considered, is a clear indication of the robustness
of the EMC-SRC correlation. This strengthens the speculation
presented in Ref. [8] that both the EMC effect and the NN -
SRC originate from high-momentum nucleons in the nucleus.

More data are required to further map out and understand
this correlation. Several experiments approved to run as
part of the 12 GeV program at Jefferson Lab will measure
both the SRC scaling factors and the EMC effect at high
precision over a wide range of light and heavy nuclei [21–23].
Another experiment [24] will search for medium modification
of the structure function of deeply bound, high-momentum
nucleons. This will be done by performing DIS scattering
off high-momentum nucleons in deuterium and tagging the
partner (high-momentum) recoil nucleon. The results of this
experiment will allow comparison of the structure function of
free and bound nucleons and gain insight on the connection of
the EMC effect to high-momentum nucleons in the nucleus.
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Short Range Correlations and the EMC Effect

Given the fact that the inclusive data integrate over very different 
parts of the spectral function this probably deserves more study.
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FIG. 2: Magnitude of the EMC effect, defined as |dR/dx| vs.
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FIG. 3: Magnitude of the EMC effect vs. A.

The original SLAC E139 analysis examined the nu-224

clear dependence of the EMC effect in terms of an ad-hoc225

logarithmic A-dependence as well as the average nuclear226

density. In Figure 3 we show the combined E139 and227

E03-103 data vs. A (logarithmic horizontal scale). There228

is no particular expectation that the EMC effect should229

correlate logarithmically with A, although, as was seen230

in [18], the assumption works remarkably well for large231

A. As one extrapolates from large A, however, one can232

see a significant deviation for A = 3. Alternatively, an233

A dependent fit could be constructed from the values of234

A < 12, but this would then fail at larger A.235

In Figure 4 the size of the EMC effect is shown as a236

function of the average nuclear density. Here the average237

nuclear density is calculated from nuclear density distri-238

butions, ρ(r), derived from electron scattering data [24].239

This is in contrast to [18], in which the average density240

FIG. 4: Magnitude of the EMC effect vs. average nuclear
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The notion that the EMC effect should scale with density245

is quite intuitive; if the effect may be attributed to mod-246

ifications in nucleon structure due to interactions with247

other nucleons in the nucleus, it would make sense that248

the effect should be larger when there are more nearby249

partners with which to interact.250
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well with the average nuclear density, with the excep-252

tion of 9Be. This was explained in [19] as being due to253

the cluster–like structure of 9Be, whose wave function254

includes a sizable component in which the nucleus can255

be thought of as two α clusters associated with a sin-256

gle neutron. If the EMC effect is governed by the local257

rather than the average nuclear density, then it is not258

unreasonable that the size of the effect in 9Be would sim-259

ilar in magnitude to that in 4He. To test more defini-260
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nuclear density”, additional data on light nuclei are re-262

quired. Such studies are planned as part of the program263

after the Jefferson Lab 12 GeV Upgrade [25].264
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lies on the notion that the electron or muon probes only266
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the surface. For nuclei with A>8 the nuclear density dis-270
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to the lepton scattering cross section from this portion of273
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FIG. 5: Magnitude of the EMC effect vs. A−1/3.

In addition, the nuclear surface is also characterized275

by a nearly universal shape ρ(r − R) , where R is the276

half-density radius R = r◦A
1

3 . Contributions from the277

surface then grow as R2, or A2/3.278

It then follows that the cross section, normalized to279

A, should scale like A−1/3. For small-A nuclei the nu-280

clear response is dominated by surface effects while for281

large-A nuclei the nuclear response is dominated by the282

constant density region. It has been argued that the re-283

sponse function (per nucleon) for nuclear matter can be284

extrapolated as a linear function of A−1/3 to A−1/3 = 0285

in the deep inelastic scattering region [26].286

In Figure 5 the extracted EMC slope is plotted versus.287

A−1/3. Somewhat surprisingly, this yields the best cor-288

relation for all nuclei of the options shown so far. This289

is not expected, since the prediction of the A−1/3 be-290

havior is based on the assumption of an A-independent291

“surface” density distribution and a scaling with A of the292

volume/surface ratio. The assumption that the shape of293

the “surface” density is universal is certainly not valid294

for A ≤ 12, and it is not clear that the division into a295

surface region and a core at the saturation density is at296

all applicable to 3,4He.297

It is important to establish the correct nuclear depen-298

dence of the EMC effect for extrapolations to nuclear299

matter, where exact theoretical calculations are feasible.300

This extrapolation is very sensitive to the results from301

heavy nuclei and therefore to extra corrections that come302

with them, i.e. Coulomb distortion. In addition, as indi-303

cated above, the EMC ratios are formed directly from the304

cross sections ratio instead of the structure functions ra-305

tio assuming no nuclear dependence in R = σL

σT
. Coulomb306

distortions introduce kinematical corrections and conse-307

quently have a direct effect on the extraction of R. An308

indication of nuclear dependence in R was observed re-309

cently [27] after applying Coulomb corrections to SLAC310

E139 and E140 [28] data.311

However, for the data presented here, correcting for312

Coulomb distortion would have no effect on nuclei lighter313

than 12C and at most a 2% effect on the 197Au EMC314

slope and therefore would not affect any of the nuclear315

dependences studied above. New results on heavy nuclei316

from JLab E03-103 [29], for which Coulomb corrections317

are not anymore negligible, and the new extrapolation to318

nuclear matter [30] including a re-analysis of the world319

data will provide additional insights in the origin of the320

EMC effect. Also the addition of the photon field effect321

from Ref. [31] will be addressed with the publication of322

these new data.323

NUCLEAR DEPENDENCE OF SHORT RANGE324

CORRELATIONS325

Quasielastic electron scattering from nuclei isolates in-326

coherent scattering from the protons and neutrons in the327

nucleus. Much as DIS data can map out the momentum328

distribution of the quark constituents of hadrons, QE329

scattering can be used to study the momentum distribu-330

tions of the hadrons [32]. Inclusive electron scattering331

allows us to isolate contributions from high-momentum332

nucleons in SRCs by going to x > 1 kinematics [2, 8].333

For quasielastic scattering at moderate values of Q2
334

(1-4 GeV2), we can decompose the cross section into335

contributions from single-nucleon scattering (mean-field336

independent particle contributions) and scattering from337

2-nucleon, 3-nucleon, etc... correlations [2]:338

σ(x, Q2) =
A

∑

j=1

A
1

j
aj(A)σj(x, Q2) (4)

where σj(x, Q2) = 0 at x > j and the aj(A)’s are pro-339

portional to the probabilities of finding a nucleon in j–340

nucleon correlation. In the case of the electron–deuteron341

cross section, σ2, it will be dominated by contributions342

from 2-n correlations for x>1.4, where the mean field343

contribution has died off. Then, a2 can be closely related344

to the number of 2-n correlations in the nucleus (per nu-345

cleon) relative to that of the deuteron. Hence Eq. (4)346

expresses the fact that in the region j < x < j + 1 the347

contribution of j−nucleon SRC dominates. This result348

is in reasonable agreement with numerical calculations of349

the nuclear spectral functions [33, 34].350

Since nuclei are dilute, aj # aj+1, Eq. (4) suggests351

scaling relations between scattering off the lightest nuclei352

(A = 2, for example) and heavier nuclei:353

2

A

σA(x, Q2)

σD(x, Q2)
= a2(A) |1<x≤2 (5)

The scaling of the cross section ratios has been estab-354

lished, first at SLAC [2] and at Jefferson Lab [3, 4]. A355

recent experiment at Jefferson Lab [35] has measured this356
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FIG. 7: R2N versus A(top) and against A−1/3 (bottom).

ing with A−1/3 is only an approximation which is not429

expected to be particularly reliable for very light nuclei.430

Figure 8 shows R2n as a function of average nuclear431

density. If one assumes a uniform-sphere distribution for432

the density, then the probability for two nucleons to be433

close together will be proportional to the average den-434

sity, and the probability for a nucleon to be part of an435

SRC will be proportional to the nuclear density. While436

this gives a reasonable approximation for the very heavy437

nuclei, there is a clear breakdown for light nuclei. One438

can exclude the very light nuclei, A ≤ 4, and obtain a439

reasonable linear fit for the remaining nuclei, or one can440

treat 9Be as the outlier and obtain an acceptable (but441

worse) fit that includes the light nuclei. However, it is442

clear that the simple density-dependent model does not443

cover the full range of nuclei measured. In fact, we see444

deviations that are very reminiscent of those shown by445

the EMC effect [19].446

NF: I added this in case we want to show the447

overlap points As discussed in the introduction, nu-448

cleons can have a significant amount of overlap in the449

nucleus before they come close enough to feel the repul-450

FIG. 8: R2N versus average nuclear density.

sive strong force. If we can quantify this overlap, it could451

be a reasonable measure of the local density that a given452

nucleon experiences, which can be different from the av-453

erage nuclear density for light nuclei. A simple way to454

estimate this effect is by taking the 2-body densities from455

GFMC calculations and to integrate the strength of the456

distribution upto 1 fm with a weight that falls off as the457

distance increases. This is plotted along the average nu-458

clear density dependence in Figure 9, with an arbitrary459

scaling constant. It is very interesting to note that the460

overlap exhibits the same density dependence as R2N .461

FIG. 9: R2N versus density, along with the prediction assum-
ing that R2N scales with the average nucleon overlap. If we
include this, we’ll have to include the definition of the ’local
overlap’ calculation, and explain the idea. Nadia also has a
nice figure of R2N vs. overlap, but this is in some ways more
striking (and since we can’t calculate it for heavy nuclei, we
may show it just up to Carbon.
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•Measure ratios to 2H, 3He, 4He out to large x 
and over wide range of Q2

• Study Q2, A dependence (FSI)

•Absolute Cross section to test exact 
calculations and FSI

• Extrapolation to NM

What is an experimentalist to do?

• 6 GeV (completed in Spring 2011)

• E-08-014: Three-nucleon short range correlations studies in 
inclusive scattering for 0.8 < 2.8 (GeV/c)2  [Hall A]

• 12 GeV

• E12-06-105:  Inclusive Scattering from Nuclei at x > 1 in the 
quasielastic and deeply inelastic regimes  [Hall C], approved.
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SRC Wish List 2N-SRC 

1. For the 2N-SRC pair,  what is the CM , relative 
momentum and the correlation between them as a 
function of all relevant parameters
a) What are the most important parameters ? 
momentum,  different nuclei.
b) How to best compare data with theoretical 
calculations?

2. Can we identify  and quantify the amount of 2N-
SRC at XB≤1 ?
3. How to characterize the transition between mean 
field and 2N-SRC dominant regions ?
4. What is the number and isospin structure of 2N-
SRC in very asymmetric nuclei (N≠Z) ?

Tuesday, May 15, 12



SRC Wish List 2N-SRC 

5. Can we identify and quantify the decay of 2N-SRC 
to non - 2 nucleon final states?
6. Can we identify and quantify signature for exotica 
(intermediate hidden color state or non-nucleonic DOF)   
in the 2N-SRC?
7. How to extrapolate the 2N-SRC (and the EMC) to 
infinite symmetric nuclear matter?
8. How to extrapolate the 2N-SRC (and the EMC) to 
high density (n star)?
9. Are  2N-SRC relevant to the neutrino nuclear 
problems? 
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3N-SRC 

1.What is the amount of 3N-SRC as a function of relevant 
parameters (what are the relevant parameters?: 
momentum, nuclei….
2. Can we identify  the structure of 3N-SRC ?  Coplanar, 
star configuration…?
3. Can we study the isospin structure of 3N-SRC and the 
relation between it and the geometry  of the 3N-SRC ?
4. What determines the transition between 2N-SRC and 
3N-SRC dominant regions ?
5.What is the number and isospin structure of 3N-SRC in 
very asymmetric nuclei (N≠Z).
6.What and how can we learn about 3N forces from 3N-
SRC ? 

SRC Wish List
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EMC-SRC 
1.What is the dependence of the EMC effect on the 
virtuality? On local density?
a) Is it universal?

2. Can we establish better connection between the EMC 
and SRC other than the linear correlation ?
3. Can we tell if it is a local density or a large 
virtuality/momentum that connect the two phenomena ?
4. Can we study the isospin  dependence of the EMC 
effect using SRC ?
5. Can we identify/quantify more than 3N SRC ?
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Finally, we need

• More precise data over a wider range of A and Q2,
• inclusive and exclusive 
• Isospin studies

• Reinvigorated theoretical effort
• LDA is inadequate, in my view. A finite nucleus is not 
simply nuclear matter at local densities.
• Keep pushing the limit for ab-initio calculations

• Create an archive with all available spectral functions
• Study details of <SE> as a possible lever to expose 
the relationship between SRC and EMC
• Resolve the FSI issues
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E12-06-105 Inclusive 
Scattering from Nuclei 
at x > 1 in the 
quasielastic and 
deeply inelastic 
regimes

• Moderate Q2 and large x
• Two and multi-nucleon correlations

• A-dependence of strength, density dependence, non-isoscalarity
• Provide tests of ‘exact’ calculations [S(k,E)] through σ, expose role of FSI

• Very high Q2 and 1 < x < 1.5
• Extraction of SF and underlying quark distributions at x > 1
• Provide insight into origin of EMC effect
• Provide extreme sensitivity to non-hadronic components

Two distinct kinematic regimes

2H, 3He, 4He, 6,7Li, 10,11Be, 
12C, 40,48Ca, Cu, Au

H
M
S

︸"
︸

H
M
S

︸"
︸

S
H
M
S

SHMS︸"︸

super-fast quarks,
quark distribution functions

medium modifications

SRC, n(k), FSI, σ
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Finish

•Inclusive (e,e’) at large Q2 scattering and x>1 is a powerful tool to explore 
long sought aspects of the NN interaction
• Considerable body of data exists

• Provides access to SRC and high momentum components through scaling, 
ratios of heavy to light nuclei and allows systematic studies of FSI

• Scaling  in ξ appears to work well even in regions where the DIS is not 
the dominate process
• DIS is does not dominate over QES at 6 GeV but should at 11 GeV and 
at Q2 > 10 - 15  (GeV/c)2. We can expect that any scaling violations will 
vanish as we go to higher Q2

• Once DIS dominates it will allow another avenue of access to SRC and to 
quark distribution functions
•New experiments have been approved to push these investigations into 
heretofore unexplored regions
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Inclusive (e,e')
l A:: SRC A=3 a2 (E11-***)
l C:: Light A EMC effect (E10-008)
l C:: SRC a2 (E06-105)
l C:: Large A EMC and a2 (Infinite nuclear matter?)

Semi Inclusive (e,e'N)
l C:: EMC-SRC D(e,e'Nrecoil) with LAD (E11-107)
l C:: Tagged EMC A(e,e'Nrecoil)
l B:: EMC-SRC D(e,e'nrecoil) with LAD

Exclusive (e,e'NN)
l B:: SRC deuteron spectator tagging 4He(e,e'pd)
l B:: High statistics, Large Q2 A(e,e'pN)
l B:: Low recoil neutron with LAD → SRC threshold
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• How large are the probabilities of SRCs in nuclei ? • 
What is the isotopic structure of SRCs? • Are there 
significant three nucleon SRCs?
• How significant are non-nucleonic degrees of freedom in 
the SRC?
• What is kinematical range of applicability of the concept 
of SRC in QCD?
• What is the impact of SRCs on the dynamics of compact 
stars: neutron stars, hyperon stars etc?
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SRC  wish list / questions to answer

1. Understand	
  nucleon	
  modifica3on	
  in	
  nuclei
1. Can	
  we	
  iden+fy	
  and	
  quan+fy	
  signature	
  for	
  exo+ca	
  (intermediate	
  hidden	
  color	
  state	
  	
  or	
  

non	
  nucleonic	
  DOF)	
  	
  	
  in	
  the	
  2N-­‐SRC	
  ?
2. What is the dependence of the EMC effect on the virtuality ?

2. Momentum dependence of 2N-SRC
1. Learn about NN force

3. What is the isospin structure and geometry of 3N-SRC ? 
4. How to extrapolate the 2N-SRC (and the EMC) to high density (n star)? 
5. Can we study the isospin  dependence of the EMC effect using SRC ?
6. Are  2N-SRC relevant to the neutrino nuclear problems   ?
7. What and how can we learn about 3N forces from 3N-SRC ?
8. Baseline measurements of d and 3He(e,e’p) at high Q2 and p_miss

Complementarity
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