Correlations in Nuclei: Which way forward?

Donal Day University of Virginia

Hadrons in the Nuclear Medium ECT* Trento, May 14–19, 2012

Outline

- Short range Correlations Exist!
 - Can be studied via inclusive quasielastic and deep inelastic electron scattering
- A few points about the Spectral Function and integration limits
- Do FSI obstruct us from gleaning information about SRCs in inclusive electron scattering?
- SRC through ratios
- Connection between SRC and EMC
- SRC Wish list

How do we know short range correlations exist?

J.W. Negele RMP 54 (913) 1982

What else? Occupation Numbers

Density difference between ²⁰⁶Pb and ²⁰⁵Tl.

Experiment - Cavedon et al (1982) Theory: Hartree-Fock orbitals with adjusted occupation numbers is given by the curve.

The shape of the $3s^{1/2}$ orbit is very well given by the mean field calculation.

Occupation numbers scaled down by a factor ~0.65.

Theory suggests a common feature for all nuclei

What many calculations indicate is that the tail of n(k) for different nuclei has a similar shape – reflecting that the NN interaction, common to all nuclei, is the source of these dynamical correlations.

Universality of SRC

The momentum distribution is made of a mean field piece and piece due to short range correlations.

At large k the ratio between the ²H and heavy approaches a constant

Ratio of $A/^{2}H$

Tensor force responsible for dominant part of SRC and correlations are largely of pn pairs

Inclusive Electron Scattering from Nuclei

 $\frac{d\sigma^2}{dQ_{e'}dE_{e'}} = \frac{a^2}{Q^4} \frac{E'_e}{E_e} L_{\mu\nu} W^{\mu\nu}$

The two processes share the same initial state

QES in IA
$$\frac{d^2\sigma}{dQd\nu} \propto \int d\vec{k} \int dE\sigma_{ei} S_i(k, E) S_i(k)$$

Spectral function

The limits on the integrals are determined by the kinematics. Specific (x, Q²) select specific pieces of the spectral function.

DIS
$$\frac{d^{2}\sigma}{dQd\nu} \propto \int d\vec{k} \int dE W_{1,2}^{(p,n)} \underbrace{S_{i}(k,E)}_{Spectral function}$$

$$\eta(k) = \int dE \ S(k, E)$$

However they have very different Q² dependencies

 $\sigma_{ei} \propto elastic (form factor)^2 \approx 1/Q^4$ W

 $W_{1,2}$ scale with $ln Q^2$ dependence

Exploit this dissimilar Q² dependence

Spectral Function

Tuesday, May 15, 12

Spectral Function

A ridge at approx $E = k^2/2/m$ reflects the correlation in the gs

Tuesday, May 15, 12

Integration limits over spectral function

generated on 2012-05-03 by Donal Day k (GeV/c)

Integration limits over spectral function

SE (GeV)

Integration limits over spectral function

Conclusion: SRC region and EMC region sample different part of the ground state

Conclusion: With increasing Q², QES and DIS, at the same x, sample very similar parts of the ground state.

A dependence: higher internal momenta broadens the peak

But... plotted against x, the width gets narrower with increasing q -- momenta greater than k_f show up at smaller values of x (x > 1) as q increases

Inelastic contribution increases with Q²

Tuesday, May 15, 12

y is the momentum of the struck nucleon parallel to the momentum transfer: $y \approx -q/2 + mv/q$

Convergence of F(y) at fixed y with Q^2

- PWIA would demand convergence from below- growing integration over S(k,E)
- Final State Interactions cause F(y,q) to converge from above with increasing q
- FSI in higher Q² data are diminished

What role FSI?

In (e,e'p) flux of outgoing protons strongly suppressed: 20–40% in C, 50–70% in Au In (e,e') the failure of IA calculations to explain $d\sigma$ at small energy loss

Old problem: real/complex optical potential. Real part generates a shift, imaginary part a folding of cs, reduction of qep. Role of SRC on Lorentzian tail?? Off-shell effects on NN interaction?? Can they ever be neglected?

Tuesday, May 15, 12

What role FSI?

•Large Violation of PWIA at low Q^2

• scaling from above

Once Q² gets large, we see little Q² dependence in the scaling

Studies show that FSI are small at large Q^2 and track the FSI in the deuteron

Ciofi-Mezzetti, PhysRevC.79.051302

FSI in Correlated Glauber

a) the struck nucleon moves along a straight line with a constant velocity (eikonal approximation), and

b) the spectator nucleons are seen by the fast struck particle as a collection of fixed scattering centers (frozen approximation)

V is small and the dominant part comes from the "damping" of the motion of the struck nucleon by the imaginary potential W

$$W^{A}_{\mu\nu}(q,\omega) = \int_{0}^{\infty} d\omega' F(\omega - \omega') W^{A}_{\mu\nu,IA}(q,\omega' - V(q))$$

folding function $F(\omega - \omega') = \frac{1}{\pi} R \int_{0}^{\infty} dt \ e^{i(\omega - \omega')t} \ e^{-W(q,t)t}$

If W = 0 then F($\omega - \omega'$) becomes δ function and $W_{\mu\nu}^A \Rightarrow W_{\mu\nu,IA}^A$ Imaginary part of optical potential $W(p') = \frac{\hbar}{2} \rho v(p') \sigma_{NN}(p')$ Benhar et al.

CGA over estimates the FSI

Modifications of the free space NN scattering amplitude in the medium?

Final State Interactions in CGA

FSI has two effects: energy shift and a redistribution of strength from QEP to the tails, just where correlation effects contribute.

Rescattering depends on joint probability of finding the struck particle at position r_i and a spectator at position r_j

Two-body density not uniformly distributed at $r_i = r_j -$ nucleons are surrounded by a hole because of correlations (2)

 $\rho^{(2)}(r_i, r_j) = \rho_A(r_i)\rho_A(r_j)g(r_i, r_j)$

SRC suppress FSI

If density is 0, the motion is undamped

Sensitivity to g(r)

Q² modest by comparison to new data

Ratios, to come, are between x = 1.5 and 2.

FIG. 13. Sensitivity of the inclusive cross section to the N-N pair distribution function at $\epsilon = 3.6$ GeV and $\theta = 25^{\circ}$.

- Issues about CGA FSI
- Extreme sensitivity to hole size
- On-shell cross sections: nucleon is off-shell by in E by $\hbar/\Delta t = \hbar$ W, modification of NN interaction
- total cross section?
- Unitarity? Folding function is normalized to one.
- Role of momentum dependent folding function (Petraki et al, PRC 67 014605, 2003) has lead to a quenching of the tails.
 - •Comparison to data with this new model for a range of A and Q^2 be very useful

"The discrepancy with the measured cross sections increases as q increases, while the suppression of FSI's due to the momentum dependence of the folding function appears to be larger at lower momentum transfer.

A different mechanism, leading to a quenching of FSI's and exhibiting the opposite momentum-transfer dependence still seems to be needed to Petraki et al, PRC 67 014605 reconcile theory and data."

Tuesday, May 15, 12

Why might a 'different mechanism' be necessary. Why are the cross sections too large? Arrington, Higinbotham, Rosner and Sargsian, arXiv:1104.1196v3[nucl-ex]

Calculation of (c) is nearly impossible - too many channels are involved

When eikonal theorem valid FSI can be expressed as a series of diffractive elastic and inelastic rescatterings

Apply optical theorem Im $[f_{NN}^{el}(t=0)] = \sigma^{total}$

AGK Cutting rules, Bertocchi and Treleani Inclusive hadron-nucleus scattering Using only elastic rescattering amplitudes (Glauber theory) violates unitarity, restored by including inelastic rescatterings. There are cancelations between the amplitudes

Abramovsky-Kanchelly-Gribov

Why might a 'different mechanism' be necessary. Why are the cross sections too large? Arrington, Higinbotham, Rosner and Sargsian, arXiv:1104.1196v3[nucl-ex]

AGK Cutting rules, Bertocchi and Treleani

Using only elastic rescattering amplitudes (Glauber theory) violates unitarity, restored by including inelastic rescatterings. There are cancelations between the amplitudes

Sum of (c) elastic and (d) inelastic cancels half of interference term (b)

CS Ratios and SRC

In the region where correlations should dominate, large x,

$$= \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$

$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) + \frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}$$

a_j(A) are proportional to finding a nucleon in a j-nucleon correlation. It should fall rapidly with j as nuclei are dilute.

 $\sigma(\mathbf{x}, Q^2)$

$$\sigma_2(x,Q^2) = \sigma_{eD}(x,Q^2) \text{ and } \sigma_j(x,Q^2) = 0 \text{ for } x > j.$$

$$\Rightarrow \frac{2}{A} \frac{\sigma_A(x, Q^2)}{\sigma_D(x, Q^2)} = a_2(A) \Big|_{1 < x \le 2}$$
$$\frac{3}{A} \frac{\sigma_A(x, Q^2)}{\sigma_{A=3}(x, Q^2)} = a_3(A) \Big|_{2 < x \le 3}$$

Assumption is that in the ratios, off-shell effects and FSI largely cancel.

 $a_j(A)$ is proportional to probability of finding a *j*-nucleon correlation

F&S

Selection by kinematics

Appearance of plateaus is A dependent.

Kinematics: heavier recoil systems do not require as much energy to balance momentum of struck nucleon – hence p_{min} for a given x and Q^2 is smaller. Dynamics: mean field part in heavy nuclei persist in x to larger values

Have to go to higher x or Q^2 to insure scattering is not from mean-field nucleon

Ratios, SRC's and Q² scaling

 $a_j(A)$ is probability of finding a jnucleon correlation

E02-019, PRL 108, 092502 (2012), Fomin et al.

Tuesday, May 15, 12

Ratio of per nucleon cross sections is NOT ratio of nucleons in a SRC

Convolution of CM motion with ²H n(k)

$$n(k) = \int \frac{d^{3}k'}{(2\pi)^{3}} n_{1}(|\vec{k} - \vec{k'}|) n_{2}(k') \quad \text{if one is a gaussian} \\ n_{1}(k) = (4\pi a^{2})^{3/2} e^{-a^{2}k^{2}} \\ n(k) = \frac{2a}{\sqrt{\pi}} \frac{e^{-a^{2}k^{2}}}{k} \int_{0}^{\infty} dk' k' e^{-a^{2}k'^{2}} \sinh(2a^{2}kk') n_{2}(k')$$

Using forms from Ciofi/Simula PRC 53 (1689)

$$n_{CM}^{eff}(k_{CM}) = \left(\frac{a_{CM}}{\pi}\right)^{3/2} e^{-a_{CM}k_{CM}^2} \qquad n_O(k) = \sum_{i=1}^{m_O} A_i^O \frac{e^{-B_i^{(O)}k^2}}{(1+C_i^{(O)}k^2)^2}$$

Motion of CM function

n(k)

Ratio of nucleon in an (np) pair, COM and no isoscalar correction

A	R_{2N} (E02-019)	SLAC	CLAS	F _{CM}	Ciofi/Simula
³ He	1.93 ± 0.10	1.8 ± 0.3	• • •	1.10 ± 0.05	1.9
⁴ He	3.02 ± 0.17	2.8 ± 0.4	2.80 ± 0.28	1.19 ± 0.06	* 3.8
Be	3.37 ± 0.17	• • •	• • •	1.16 ± 0.05	
С	4.00 ± 0.24	4.2 ± 0.5	3.50 ± 0.35	1.19 ± 0.06	4.0
Cu(Fe)	4.33 ± 0.28	(4.3 ± 0.8)	(3.90 ± 0.37)	1.20 ± 0.06	4.5
Au	4.26 ± 0.29	4.0 ± 0.6	• • •	1.21 ± 0.06	4.8 (²⁰⁸ Pb)
$\langle Q^2 angle$	$\sim 2.7 \text{ GeV}^2$	$\sim 1.2 \text{ GeV}^2$	$\sim 2 \text{ GeV}^2$		
x_{\min}	1.5	• • •	1.5		
α_{\min}	1.275	1.25	1.22–1.26		

FSI and plateaus

Emphatic arguments have been made that these ratio values are an artifact – can not be interpreted as the ratio of correlated in strength in heavy to light nuclei

The claim is that the plateaus, remarkable as they appear, are a result of FSI (and the role of SRC in FSI)

•If the nuclear medium affects via Initial State Interaction the correlated 2-nucleon system ---it does as the high-k tail is (say) 4 times higher in a nucleus than in the deuteron ---then the nuclear medium also increases the FSI by a comparable factor.

• Glauber-type calculations the FSI effects are explicitly proportional to the nuclear density.

It would be useful to have new calculations over a range of A and Q².

Short Range Correlations and the EMC Effect

O. Hen, E. Piasetzky, and L. B. Weinstein
Phys. Rev. C 85, 047301 (2012)
L. B. Weinstein, E. Piasetzky, D. W. Higinbotham,
J. Gomez, O. Hen, and R. Shneor
Phys. Rev. Lett. 106, 052301 (2011)
Arrington, Daniel, Day, Gaskell and Fomin, in
preparation

Are plateaus an artifact of complicated FSIs which coincidently relates the EMC to the SRC? Very unlikely.

Given the fact that the inclusive data integrate over very different parts of the spectral function this probably deserves more study.

R_{2N} versus various parameters

What is an experimentalist to do?

- Measure ratios to ²H, ³He, ⁴He out to large x and over wide range of Q²
 - Study Q², A dependence (FSI)
- Absolute Cross section to test exact calculations and FSI
- Extrapolation to NM
- 6 GeV (completed in Spring 2011)
 - E-08-014: Three-nucleon short range correlations studies in inclusive scattering for 0.8 < 2.8 (GeV/c)² [Hall A]

• 12 GeV

• E12-06-105: Inclusive Scattering from Nuclei at x > 1 in the quasielastic and deeply inelastic regimes [Hall C], approved.

SRC Wish List 2N-SRC

1. For the 2N-SRC pair, what is the CM , relative momentum and the correlation between them as a function of all relevant parameters

a) What are the most important parameters ? momentum, different nuclei.

b) How to best compare data with theoretical calculations?

2. Can we identify and quantify the amount of 2N-SRC at $X_B \le 1$?

3. How to characterize the transition between mean field and 2N-SRC dominant regions ?

4. What is the number and isospin structure of 2N-SRC in very asymmetric nuclei (N \neq Z)?

SRC Wish List 2N-SRC

5. Can we identify and quantify the decay of 2N-SRC to non – 2 nucleon final states?

6. Can we identify and quantify signature for exotica (intermediate hidden color state or non-nucleonic DOF) in the 2N-SRC?

7. How to extrapolate the 2N-SRC (and the EMC) to infinite symmetric nuclear matter?

8. How to extrapolate the 2N-SRC (and the EMC) to high density (n star)?

9. Are 2N-SRC relevant to the neutrino nuclear problems?

SRC Wish List

3N-SRC

1.What is the amount of 3N-SRC as a function of relevant parameters (what are the relevant parameters?: momentum, nuclei....

2. Can we identify the structure of 3N-SRC? Coplanar, star configuration...?

3. Can we study the isospin structure of 3N-SRC and the relation between it and the geometry of the 3N-SRC ?

4. What determines the transition between 2N-SRC and 3N-SRC dominant regions ?

5.What is the number and isospin structure of 3N-SRC in very asymmetric nuclei (N \neq Z).

6.What and how can we learn about 3N forces from 3N-SRC ?

EMC-SRC

1. What is the dependence of the EMC effect on the virtuality? On local density?

a) Is it universal?

2. Can we establish better connection between the EMC and SRC other than the linear correlation ?

3. Can we tell if it is a local density or a large

virtuality/momentum that connect the two phenomena?

4. Can we study the isospin dependence of the EMC effect using SRC ?

5. Can we identify/quantify more than 3N SRC?

Finally, we need

- More precise data over a wider range of A and Q^2 ,
 - inclusive and exclusive
 - Isospin studies
- Reinvigorated theoretical effort
 - LDA is inadequate, in my view. A finite nucleus is not simply nuclear matter at local densities.
 - Keep pushing the limit for ab-initio calculations
- Create an archive with all available spectral functions
- Study details of <SE> as a possible lever to expose the relationship between SRC and EMC
- Resolve the FSI issues

E12-06-105 Inclusive Scattering from Nuclei at x > 1 in the quasielastic and deeply inelastic regimes

²H, ³He, ⁴He, ^{6,7}Li, ^{10,11}Be, ¹²C, ^{40,48}Ca, Cu, Au

Two distinct kinematic regimes

• Moderate Q^2 and large x

- Two and multi-nucleon correlations
 - A-dependence of strength, density dependence, non-isoscalarity
- Provide tests of 'exact' calculations [S(k,E)] through σ , expose role of FSI
- Very high Q^2 and 1 < x < 1.5
 - Extraction of SF and underlying quark distributions at x > 1
 - Provide insight into origin of EMC effect
 - Provide extreme sensitivity to non-hadronic components

Finish

- •Inclusive (e,e') at large Q^2 scattering and x>1 is a powerful tool to explore long sought aspects of the NN interaction
 - Considerable body of data exists
- Provides access to SRC and high momentum components through scaling, ratios of heavy to light nuclei and allows systematic studies of FSI
- \bullet Scaling in ξ appears to work well even in regions where the DIS is not the dominate process
 - DIS is does not dominate over QES at 6 GeV but should at 11 GeV and at $Q^2 > 10 15$ (GeV/c)². We can expect that any scaling violations will vanish as we go to higher Q^2
- Once DIS dominates it will allow another avenue of access to SRC and to quark distribution functions
- •New experiments have been approved to push these investigations into heretofore unexplored regions

Inclusive (e,e')

- A:: SRC A=3 a₂ (E11-***)
- C:: Light A EMC effect (E10-008)
- C:: SRC a₂ (E06-105)
- C:: Large A EMC and a_2 (Infinite nuclear matter?)

Semi Inclusive (e,e'N)

- C:: EMC-SRC D(e,e'N_{recoil}) with LAD (E11-107)
- C:: Tagged EMC A(e,e'N_{recoil})
- B:: EMC-SRC D(e,e'n_{recoil}) with LAD

Exclusive (e,e'NN)

- B:: SRC deuteron spectator tagging ⁴He(e,e'pd)
- B:: High statistics, Large Q² A(e,e'pN)
- B:: Low recoil neutron with LAD \rightarrow SRC threshold

- How large are the probabilities of SRCs in nuclei ?
 What is the isotopic structure of SRCs?
 Are there significant three nucleon SRCs?
- How significant are non-nucleonic degrees of freedom in the SRC?
- What is kinematical range of applicability of the concept of SRC in QCD?
- What is the impact of SRCs on the dynamics of compact stars: neutron stars, hyperon stars etc?

SRC wish list / questions to answer

1. Understand nucleon modification in nuclei

- 1. Can we identify and quantify signature for exotica (intermediate hidden color state or non nucleonic DOF) in the 2N-SRC ?
- 2. What is the dependence of the EMC effect on the virtuality ?
- 2. Momentum dependence of 2N-SRC
 - 1. Learn about NN force
- 3. What is the isospin structure and geometry of 3N-SRC?
- 4. How to extrapolate the 2N-SRC (and the EMC) to high density (n star)?
- 5. Can we study the isospin dependence of the EMC effect using SRC?
- 6. Are 2N-SRC relevant to the neutrino nuclear problems ?
- 7. What and how can we learn about 3N forces from 3N-SRC ?
- 8. Baseline measurements of d and 3He(e,e'p) at high Q2 and p_miss

Complementarity