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Nucleons have Structure and Size!
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Motivation

[0 FF are fundamental quantities

[J Describe the internal structure of the nucleon

[l Provide rigorous tests of QCD description of the nucleon
[ Necessary for study of nuclear structure

Few body structure functions

Important input to Parity violating experiments

50 years of effort - - - what is new?

[J New techniques, unexpected behavior, and a reinvigorated
theoretical effort have made the last decade one of important
progress.
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Formalism

do E’ )2 [ 2 2 2 ) o 2
= OMott /= ( 1) + 7 2(F1‘|‘F2) tan (96)+(F2) 7F1,2 —F1,2(Q )
dQ Eo

Q? = 4EFE'sin?(0/2)

FP(0) =1
EnFi F2(0) = 1.79
GE,M

electron nucleon .
In Breit frame F; and F5 related to
\ charge and spatial curent densities:
p=Jo=2eM[F — TF3]

Ji = euy;ulF1 + F2li=1,2,3

Gp(Q%) = 1(Q%) — 712 (Q%) G (Q7) = F1(Q%) + 12 (Q7)

[J For a point like probe G' g and G s are the FT of the charge and magnetizations
distributions in the nucleon, with the following normalizations

Q? = 0 limit: G% =1GE =0 sz\/f = 2.79 G, = —1.91 one-photon approx.
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Rosenbluth formula, separation

G2 4 1G2
ons | ZETEM | o062 tan2(9/2)
1+7

do e(1+71)

= 7G3,(Q%) +e G5 (Q?)
df ONS N ~ / N——

intercept slope

[ Intercept and slope give G'js and G g
[0 Gpr dominates for large 7.

Must control kinematics, acceptances
and radiative corrections.

Data consistent with one-photon ex-
change

e 1 =1+4+2(1+7)tan(6/2)?
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Proton data from Rosenbluth

CB (@)
Hp

Scaling Law

G (Q%) =~

\ .

——

——t

Prvgentg b - it - ---l_ 4o -

* Hohler [76] ¢ Berger [71]
® Andivahis[94] | ¥ Muphy[75] | A Price [71]
W Walker [89] Borkowski [74] | % Litt [70] 0.7

M Walker [89] ¢ Berger [71]
@ Andivahis [94] | * Hohler [76] A Price [71]
¥ Sill [93] Borkowski [74] Litt [70]

0.7
% Simon [80] O Bartel [73] T

0.6 I I T B R 1 1 TR R Rl L 0.65
3
Q

Yt Bosted [92] O Bartel [73]

1 1 11 \‘ 1 1 1 1 L1 11 1 1 1 1 L1 11 1 1
25678 10% 2407 10" 2x10™ 1 2 34567 10 20 30
% [(GeV/c)] Q? [(GeV/c)]

IIII|IIII|IIII|IIII)*IIII|IIII|IIII|IIII|IIII

102 2x10? ) ) 2

[0 G, consistent with G'p, but large uncertainties at large Q% and
systematic differences foreshadow limitations of Rosenbluth

0 G4, modified relative to Gp at large Q?
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Neutron Form Factor Measurements
[J No neutron target
[l proton dominates neutron
[0 G, dominates G
1, and G'% have been measured through:
[J Elastic scattering “H(e, ¢/)*H

0 Inclusive quasielastic scattering: “H(e, ¢/) X

[ Exclusive quasielastic: neutron in coincidence: “H(e, ¢'n)p

d(e,e’n)p

[ Ratio techniques d(e.e'p)n

(quasielastic)
Complications: Rosenbluth, subtraction of proton

Even with simplest nucleus — no escaping nuclear physics
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G't; unpolarized

4

B Kubon (02)
A Anklin (98+94)

1 Markow tz (93)

Kubon ratio
Anklin ratio
ratio
Lung D(e, e )X
Markowitz — D(e,e'n)p

D(e,e'n)p
D(e,e'p)n

ratio =

1
QF(GeVic)?
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G from e-D elastic scattering

In A elastic e-D is sum of proton and neutron responses with deuteron wt
weighting and in small 6. approximation

d n ,
d_?l ~ omott (G + GE)2 [u(r)2 + w(T)Q] ]o(%)dr o
5 BN R ' |

T | | T T T 0.10_ T T T T | T T T T T | T T T T

Platchov90
Paris

Argonne
Nijmegen

Paris + DD ———
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Simon81
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Models of Nucleon Form Factors

Dispersion relations  Formalism is model indepen-  Hoehler (1976), Hammer, Mergell,
dent Meissner, Drechsel. Imaginary part

F(t) = =

T

/ of the spectral function receive
1 ImF(t") ,
dt contributions from all the possible
to

t —t
intermediate states. Modeling is still

necessary.

IJL,Gari, Krumpelmann

Spectral function is approximated
by a series of poles corresponding to
vector mesons, w, ¢, and p
appearing along the real axis. Fails
to reproduce the large Q2 behavior

of pQCD.

Farrar&Jackson, Brodksy&Lepage
Helicity conservation
Counting rules

constant

JLAB data: Q % — constant
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Models of Nucleon Form Factors

Atlow Q2

Fy ~ Fy ~ —1

Al ~ 0.8 GeV
VMD-pQCD At large Q>

Fy ~

1
Q2 10g(Q% /A op)

Gari & Krumpelmann, Lomon,
Bijker

Failure to follow the high Q7
behavior suggested by pQCD led
GK to incorporate pQCD at high Q?
with the low VMD behavior.
Inclusion of ¢ by GK had significant
effect on G';. Lomon has updated
with new fits to selected data.

Lattice

Draper, Liu, .. Dong, Liu,
&Williams; Thomas, QCDSF
Limitations in computer speed;
quark masses 5-10 times higher than
the physical values; quenched QCD,

extrapolations are varied

light front

point form

Miller.., Cardarelli & Simula
CM motion and relative
motion of quarks separated,
SU(6) symmetry breaking by
Melosh rotations

Wagenbrunn...
PFSA, GBE

QNP 06, Madrid, June 5-10, 2006
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Models of Nucleon Form Factors
CBM

LcMm = Lym1TBag+LFree—n+Lint

Lu, Thomas,
Williams

Miller
pion cloud

Helicity
non-conservation
through Quark orbital

angular momentum

Helicity

Ralston.. (pQCD)
Miller...(RCQM)
Brodsky

QNP 06, Madrid, June 5-10, 2006
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Spin Correlations in elastic scattering

d
%:;..(G +...GY) . PPNGEGM+ PP”G?WJ

(da/dQ)unpol AT AH

First work at Bates and Mainz starting in early 1990’s

0 Dombey, Rev. Mod. Phys. 41 236 (1968): p(é€, e’)

0 Akheizer and Rekalo, Sov. Phys. Doklady 13 572 (1968): p(€, €', p)
0 Arnold, Carlson and Gross, Phys. Rev. C 23 363 (1981): *H(€, ¢')p
[l Blankleider and Woloshyn, Phys. Rev. C 29, 538 (1984)

polarized *He as an effective polarized neutron target
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Nucleon Form Factors

Polarized Beam Unpolarized Beam

Spin Cross Section
Correlations Measurements

Rosenbluth,
Super-
Rosenbluth

Recoil Beam-Target Ratio
Polarimetry Asymmetry Method

QNP 06, Madrid, June 5-10, 2006 15



Recoil Polarization

/ Electron scattering plane

Secondary
scattering
plane

IoPr= — 2~/ T —|—’7’ GEGMtaIl 6/2)
1
Ion—— +E W71+ 7)G3 tan? (0. /2)

Direct measurement of form factor ratio by
measuring the ratio of the transfered
polarization P; and P,
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Recoil Polarization — Principle and Practice

Interested in transfered polarization, P, and P;, at the target

Polarimeters are sensitive to the perpendicular components only,
P and PP °!

Measuring the ratio P,/ P, requires the precession of P, by angle x
before the polarimeter.

If polarization precesses x (e.g. in a dipole):
PP =siny - hP, and PP = hP,

PP =~ P in scattering plane and proportional to GGy

PR is related to G2,

GY. /G, via 'H(€, ¢'p) at Jefferson Lab and Mainz

n/G", via “H(€, €'1)p at Jefferson Lab and Mainz

QNP 06, Madrid, June 5-10, 2006 17



G", at Jefferson Lab (Hall A)

O left-right asymmetry = P,/F

polarization in vertical direction

0 up-down asymmetry = P
polarization in the horizontal

direction

front tracking analyzer back tracking

QNP 06, Madrid, June 5-10, 2006 18



G, in Hall A

Azimuthal Distribution

N (¥, ¢) = No(v {1 + [hA (9) P, pPP amstr} sin ¢ — [hA (9P, pirp 4 bmstr} COS go}

Aximuthal Asymmetry (+/-)

hee:

200
(@ (degrees)

[ Difference between 2 helicity states

— instrumental asymmetries cancel, Pg and A, cancel.

GE N o (E€+Ee

— gain access to the polarization components P, 2Mn
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G, in Hall A — Results

2 soliton model, 2002
3 CQ, G. Miller 2002

6 Gross 2004
7 Bijker 2004

® JLab 93-027 -
B JLab 99-007

r

PRI L @“T%%%ﬁ%#rg T%l %l
% TJ Hﬁi

@ Gayou [02] Pospischil [01]
A Gayou[01] | % Milbrath [98]
H Jones [00] o Unpol.

Lo
ki

III|III|III|III|IIIF44III|III|III|III

¥ Dieterich [01] -0.5

'
N

10" 2x10" 1 2 3 4567890 0.0 20 24'_0 6.0 )
Q* [(GeVic)] Q° In GeV

N
X
-~ L
o

Ratio of G%,/G" , falls steeply with @2, in contrast with Rosenbluth
measurements.

Problem with Rosenbluth technique or data? More later
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G, in Hall A — Results
2.0 YY‘YYY{Y[Y{Y[Y‘Y‘ YY)

JLab Jones e.a. " 2 soliton

- 3 Frank et al 1996
. 4 CQ, G. Miller, 2002
| 9 di—quark

6 cloudy bag

JLab Gayou e.a. ,~

/

SLAC, Andivahis et al ;7 ﬁ 1 VMD Lomon 2002

/
/
/
/

A ////5/
3T

//
/72

/'/ 1 VMD Lomon 2002
i 2 soliton

3 Franck et al. 1996
4 CQ, G. Miller, 2002 SLAC, Andivahis et al

5 di—quark JLab Jones e.a.
6 cloudy bag JLab Gayou e.a.

lll‘lll‘lll‘lll‘lll‘ll

. 2. 3. 4. o

q2f2f1 007 12/10/02 Q < ﬂM G @W < qt2f1 007 12/10/02 Q < 1n G eV <
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Interpretation

Considerable Attention - The two experiments have generated 100’s of citations.
Popular press - New York Times, USA Today, Science News...
What is the Shape of the Proton? G. Miller, RCOM

Momentum space representation,
"normal” proton

High momentum quarks with spin
aligned with proton

High momentum quarks with spin
opposite to proton
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Polarization Experiments on the Neutron

Laboratory

Collaboration

Q*(GeV/c)®

Reaction

Reported

MIT-Bates
G
Gy

E85-05
BLAST
BLAST

0.255
0.1-0.8
0.1-0.3

*H(E,e'n)
2H(&,e'n)
“H(e, )

1994
2005
2005

Mainz-MAMI

A3

0.31

SHe(&, e'n)

1994

A3
A3

0.15, 0.34
0.385

*H(E,e'n)

SHe(&, e'n)

1999
1999

Al

0.67

SHe(&, e'n)

1999/2003

Al

0.3, 0.6, 0.8

“H(8, e'na

2004

NIKHEF

0.21

1999

Jetferson Lab

E93-026

0.5, 1.0

2001 /2004

E93-038

0.45, 1.15, 1.47

2003

E95-001

0.3-0.6

2003
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G5 through recoil polarization
Recoil polarization, ?H(€, €'77)p , Mainz & JLAB

[J In quasifree kinematics, Py is sensitive to G, and insensitive to
nuclear physics

Up-down asymmetry ¢ = transverse (sideways) polarization
Py = &y | P Apol. Requires knowledge of P, and A,

Rotate the polarization vector in the scattering plane (with dipole
magnet) and measure the longitudinal polarization, Py = &/ P. A,

. P
Take ratio, P—‘;’. P, and Ay cancel

E93038 at JLAB’s Hall C: Three momentum transfers, Q? = 0.45,1.13,
and 1.45(GeV /c)?.

A1 Collaboration at Mainz: Three momentum transfers,
Q? = 0.3,0.6 and 0.8(GeV /c)?
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Recoil polarization, “H(€, ¢'1)p , Mainz & JLAB

Top Rear Array

Z (Momentum Direction)

Polarization
. Vector

Rear Veto/Tagger

Front Array
> /

Y TOHMS
Ve

Bottom Rear Array/' /

Front Veto/Tagger &

Charybdis
Target LD2, LH2

Lead Curtain

[Hall C]
Taking the ratio eliminates the dependence on the analyzing power and
the beam polarization — greatly reduced systematics

Gk

@ — Ktand  where
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Q?=1.14 (GeV/c)’ O (n,n) In Front O Ap/p = -3/+5%

t
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Mainz Polarimeter
thal angle for
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Asymmetry versus
opposite excitations of
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Beam-Target Asymmetry - Principle s
normal

Polarized Cross Section:
o= -+ hA po!arizstiog
Beam Helicity h + 1 | |

A:—:

oy —o- A
oy +o_ b

A AT

Ve

B CLCOS@*(GM)E—F?)Sin@*COS(I)*GEG]W\. - NT — NI
c(Gu) +d(Gr) TR N

@* _ OO @‘k — OO
aG5,

¢(Gu)’ +d(Gg)’

— —
JLAB, BLAST, Mainz H , 2H, 3He
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—>

D (€, en)p [U(h, P) =00 (1+ hPAZd)J

is sensitive to G,

has low sensitivity to potential models

has low sensitivity to subnuclear degrees of freedom (MEC, IC)
in quasielastic kinematics

Sensitivity to G’ — Insensitivity to Reaction

>o 0.1 >o 0.1
o =1

[
< [ < [
Gg=0.5xGalster i N

Gg=1.0xGalster i
- : [ N+MEC+IC
Gg=1.5xGalster N+MEC+IC+REL

/N

\/

IIIIIIIIIIIIIIIII -0. -IIIIIIIIIIII IIIIIII IIIIIIIIIII
100 150 200 250 300 350 100 120 140 160 180 200 220 240

6" (deg) By (deg)
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—

" in Hall C/BLAST via ?H(¢, ¢/n)p

Magnetic

Coils
Time-of -Flight
Scintillators

Scintillators

p——
]
i
=
-
'-=-|Jﬂ

Lead Glass

Solid Polarized Target
Electrons in HMS

Neutron detection

Charged PID: Veto Counters
Magnetic chicane

Internal Target

Polarized Atomic Beam Source
Very large acceptance

Neutron detection

Charged particle veto: DC
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Data and Calculations of G7%

0.10 ! ! ! ! I

X R. Schiavilla

X Zhu

X J. Golak

X C.Herberg

& M.Ostrick

¢ [.Passchier

¢ Bermuth

© Seimetz/Glazier

O Madey

O Warren

0O BLAST

— Simula
Lomon
GBE-CQM
Miller

-+ Holzwarth

-+ Hammer

——— Galster Curve

1.0

Q° (GeV/c)?
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BLAST G%./G?, Data via H(€, ¢’ p)

1.1

® BLAST 850 MeV Gayou et al. [02]
— Hohler Gayou et al. [01]
Miller [02] Jones et al. [00]
--=-- Lomon [02] Dieterich et al. [01]
Ma et al. [02] Pospischil et al. [01]
-+ =+ Holzwarth [96] Milbrath et al. [98]

| | | | | | | | |
2x101  3x1071 1
Q? (GeV/c)?

C. Crawford, thesis. Systematics are dominated by the reconstruction (knowledge of Q?).
Expectation is that the systematics will be reduced significantly in final analysis.
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—

Latest G, at low Q? from via “H(e, ¢/) X

Latest (preliminary) data
from BLAST using Atomic

Beam Source

Excellent agreement with
-

Holzwarth B1 s 3 He ( € 3 6/ ) X a].'ld I'atIO
Rock Hanson Holzwarth B2 methOd data

Xu+Xu03 Arnold Simula

Gao Lung

Kubon Anin N Complete analysis of BLAST
BLAST Fw data set forthcoming.

Faessler

FS
A
*
O
|

1 10

-t |
q_
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n-at High Q? in CLAS

d D(e,e’n)p
mor _ f(Gh, Gp)

do D(e.e’p)n =~ £(GP GP
d_QQE f( M> E)

Rp =

Has advantages over D(e,e’), D(e,e'n)p

[1 No Rosenbluth separation or subtraction of dominant proton
[0 Ratio insenstive to deuteron model
[0 MEC and FSI are small in quasielastic region

[] Large acceptance to veto events with extra charged particles

[J Data taken with hydrogen and deuterium target simultaneously

[J Precise determination of neutron detection efficiency by via H (e, e'nn™)
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Gy Preliminary results from CLAS

® CLAS Preliminary

A Ankli
¢ Arnold

0 05 1 15 2 25 3 35 4 45 5
Q*(GeVic)

Preliminary results show a minimal deviation from dipole
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Pion Cloud

North pote Friedrich & Walcher remphasized role of
. 1r ) pion cloud. They fit all form factors
5 ol consistently as a sum of a broad distribution
and a "bump", where the "bump" is due to a
m-cloud. The "bump" shows up in all 4 form

factors at Q* ~ 0.25 [Kaskulov & Grabmayr,

Proton core

llmagnetic effect of meson

South pole "cjoud" M1ller]

Mainz Al: He(e e'n)
MIT-Bates: *H(é,eT)
Mainz A3: 3He(5 e')
Mainz A3 H(e e)
JLAB: H(e e n)
NIKHEE; 2H(e e’n)
JLAB: H(e e’n)
JLAB: H(e e n)
Mainz Al: H(e e)
BLAST: H(e e'’n)

B> OO0O 4P %+ 0

o v b b b b b b Ly
02 04 06 08 1 12 14 16 1.8

Q? (GeVlc)’
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Chiral Quark Model

[ A. Fassler,Th. Gutsche, V.E. Lyubovitskij, K. Pumsa-ard: hep-ph0511319

[J Baryons as bound states of constituent quarks, dressed by a cloud of mesons
[0 Excellent description of all 4 FF’s

[1 Meson cloud contributes ~ 15% to dipole moment

\/ Eden et al.(1994) % Golak et al.(2001)

@ Herberg et al.(1999) O Schiavilla & Sick(2001)
O Ostrick et al.(1999) X Zhu et al.(2001)

/\ Passchier et al.(1999) O Madey et al.(2003)

B Rohe et al.(1999)

— total
bare
— — cloud
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G"; , Status of Rosenbluth Separations

_doe(l+7)
—dQ omott

= 7G(Q°)+eGE(Q%)

OR

Fundamental problem: o insensitive
to G%, at large Q*. With uG% = G%,
G, contributes 8.3% to total cross
section at Q% = 5.

6GE x 6(or(e1)—or(€e2))(Ae) (G /G)

1.8 —
1.6
14 f
1.2 |

Bartel

Price

1.0 P

0.8 |
06 F
0.4 f

T T T T T T T
Litt

Andivahis

0.2 b

0 1

J. Arrington:
Phys. Rev. C68:034325, 2003

[J E94-110 consistent with global fit

[1 Rules out experimental systematics

correction

QNP 06, Madrid, June 5-10, 2006
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[] e dependence must be large
[J Unconsidered € dependent radiative
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Super—-Rosenbluth, p(e, p)
Reduces size of dominant corrections
Rate nearly constant for protons

No p dependent systematics T g = 2.64 Geve

Sensitivity to angle momentum reduced
Luminosity monitor (second arm)
Background small

Qattan ef al. Phys. Rev. Lett. 94:142301, 2005
(nucl-ex/0410010)

1.6
1.4

1.2
=

o= 10

0.8

o

i"'o.e

0.4
0.2

0.0
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Possible explanation: radiative corrections

There are radiative corrections to Rosenbluth experiments that are not included
in the analysis

These corrections are: Linear in € and only weakly Q* dependent.
2 2 2 2
Gy++Ge Gy++Ge

A

data

Gy, ak,ne)A G,, plus extra
radiative corr. radlatlve COlIT.

1" 0 1 ¢

Low t (Low Q?) High © (High Q?)

fhEnT R [ X

Two-photon exchange

bremsstrahlung vertex corrections
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Two Photon Contributions

Chen, Afanasev, et al. approach:

hard scattering from quark
GPDs describe the quark emis-
sion and absorption

They argue that when taking
the PT form factors as input the
addition of the 2-photon cor-
rection reproduces the Rosen-

bluth data
PRL 93, 122301(2004), PRD 72

013008 (2005)

L O Pol.: Jones et al. ++

Rosenbluth w/2- y corrections vs. Polarization data

| @ Pol.: Gayou et al.

Pol.: Gayou et al. fit

IV Rosenbluth, Mo-Tsai corr. only .
| W Rosenbluth, incl. 2y corr. w/gauss. GPD

Other work by Tomasi and Rekalo and Blunden, Melnitchuk and Tjon
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Two-Photon Contributions

2 3 4
Q? [GeV?]

E01-001 analysis
TPE of Chen et al.

TPE and Coulomb correct. (nucl-
ex/0406014)

Still a discrepancy, of which only
one-half is explained

Experimental Tests are Possible

0 2P) F04-116
o(e~p)

Rosenbluth linearity E-05-017
Recoil polarization, p,

e dependence of polarization transfer E-04-019

p' (e, €')p (SSA)
ple,e’)
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Two-Photon in other reactions

[ Neutron from factors, G,

[1 Weak form-factors

[1 Deuteron form factors

See J. Arrington, Nucleon-05 contribution.
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Data and Theory-VMD
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Data and Theory-RCQM

—— Miller
— Simula
— Giannini
—— Plessas
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6
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|
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.-~ Miller (no n-cloud)
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Data and Theory-Chiral Extrapolation
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~- Holzwarth
—-Hammer
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Planned measurements of G,

1.0

JLAB Data
®99-007

i% -03-

% Perdrisat et al. E01-109 (runs in

} late 2007)
uses Hall C HMS (with new

FPP) and BigCal
SHMS in Hall C at 11 GeV

e expt. 01-109 (2013+)

| ®m11 GeV, SHMS
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More G,

0 G% via 3}Te>(€, e/n) out to Q* = 3.4 (GeV/c)? in Hall A at JLAB

Just completed!

At 11 GeV increased acceptance and improvements to recoil polarimeter

or *He target will allow measurements to ~ 8 (GeV/c)?
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Prospects for future measurements

0 Precision measurements of G'% out to Q° = 1.5 (GeV/c)? at Mami-C via

3}Te>(é’, e'n)

Precision measurements of G%, at Mainz, up to 1 (GeV/c)*
N 31702 2 2 .
= via “He(€, e'n) out to Q* = 3.4 (GeV/c)” in Hall A at JLAB
Extension to 5 (GeV/c)? in Hall A with 12 GeV upgrade.
% via H(€, e'i)p to 4.5 (GeV/c)* at JLAB’s Hall C

Form factor ratio (G%,/G% ) out to 9 (GeV /c)? via 'H(€, e’p) in Hall C at
JLAB with 6 GeV beam, 2005-2006.

— Extension out to 12.4 (GeV/c)* with 12 GeV upgrade.
G, out to 14 (GeV/c)* with an upgraded CLAS and 12 GeV upgrade.
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Conclusion

[0 Outstanding data on G% out to high momentum transfer — spawning a
tremendous interest in the subject and the re-evaluation of our long held
conception of the proton.

Finally G measurements of very high quality from Bates, Mainz and

Jefferson Lab out to 1.5 (GeV/c)? exists, allowing rigorous tests of theory.

Data sets out to large Q° from future experiments will further constrain any
model which attempts to describe the nucleon form factors.

A resolution of the G%, data from recoil polarization and Rosenbluth
techniques will have applications in similar experiments from nuclei and
deepen our understanding of physics and experiment.

Although the major landmarks of this field of study are now clear, we are left
with the feeling that much is yet to be learned about the nucleon by refining and
extending both measurement and theory. R.R. Wilson and ].S. Levinger, Annual
Review of Nuclear Science, Vol. 14, 135 (1964).
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o s 104 S0lid Polarized Targets
Refrigerator
e iﬁ frozen(doped) 1°NDj3
“He evaporation refrigerator
5T polarizing field
remotely movable insert
dynamic nuclear polarization

Frequency

NMR Coll

—=B

— 5T

(inside caoil)

7656A1
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