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FIGURE 1 
Schemat ic re~resent~t jon2 of  the nuctear response funct ion to efectromaqnet ic 
probes.  D2 is the four vector ~~nturn transfer defined by if2 = ?j2 -  G2 and Y 
is the energy transfer v = E -  E '  fv E w) .  The absorpt ion of  real  photons 
(02 = 0)  is a purely transverse exci tat ion dominated bv the giant  resonance 
below the pion threshold and by the data resonance abave the pion threshold.  
For lepton scat tering (D2 )  D)  the absorbed photon is virtual .  This enables not  
only to vary ?j  and w independent ly,  but  also to have longi tudinal  and trans-  
verse exci tat ions.  Lepton scat tering on bath a nucleus and a proton has been 
represented.  This comparison stresses the modificat ion of  the response funct ion 
due to the nuclear medium.  The very deep inelast ic region is the region where 
both D2 and v are extremely large.  In this region scal ing effects are observed 
giving clear evidence of  the presence of  quarks.  Differences in the scal ing 
behavior of  heavv nuclei  such as the observat ions of  the European Muon Col labo-  
rat ion (EMC)  are interpreted as modificat ions of  quark dynamics in the nuclear 
medium.  

independent ly.  West3 predicted about  ten years ago that  the response funct ion 

should then depend only an the variable y,  defined by y = k 6.  This variable 

is the component  of  the momentum t  of  the knocked out  nucleon paral lel  to the 

momentum transfer 6.  The experimental  data plot ted as a funct ion of  y al l  l ie 

on the same curve represent ing the scal ing funct ion Ftyf .  This can be used to 

map out  ~~nturn distribut ions at  very high ~~nturn transfers provided that  

final  state interact ions and relat ivist ic effects are understood.  Only two 

experiments at  SLAC on deuterium4 and %e [ref .5]  have reached the very high 

momentum region where the condi t ion of  val idi ty q >> kF is sat isfied.  Roth 

show clearly this scal ing behavior.  At  present  none of  the three-body 
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Inclusive Electron Scattering from Nuclei

Two distinct processes Quasielastic from the nucleons in the nucleus

Inelastic and DIS from the quark 
constituents of the nucleon.

!e
!e′

MA M∗
A−1, −!k

!k
!k + !q, W2 = M2

Inclusive final state means no 
separation of two dominant processes

x > 1 x < 1

x  = Q2/(2mυ)

υ,ω=energy loss
3



The two processes share the same initial state
d2σ
dΩdν

∝
∫
d#k

∫
dEσei Si(k, E)︸#︸

Spectral function

δ()QES in IA

d2σ
dΩdν

∝
∫
d#k

∫
dE W

(p,n)
1,2 Si(k, E)︸#︸

Spectral function

DIS

However they have very different Q2 dependencies
σei ∝ elastic (form factor)2 W1,2 scale with ln Q2 dependence

n(k) =
∫
dE S(k, E)

There is a rich, if complicated, blend of 
nuclear and fundamental QCD interactions 
available for study from these types of 
experiments.

pX

k1
k2

q

PA
PA - 1

p

Exploit this dissimilar Q2 dependence

The limits on the integrals 
are determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 
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R.R. Whitney et al., 
Phys. Rev. C 9, 2230 
(1974).

compared to Fermi model:fit parameter kF and ε

-> getting the bulk features

Nucleus kF ε
6Li 169 17
12C 221 25
24Mg 235 32
40Ca 251 28
natNi 260 36
89Y 254 39
natSn 260 42
181Ta 265 42
208Pb 265 44

Early 1970’s Quasielastic Data

Li C

Pb

500 MeV, 60 degrees
!q ! 500MeV/c



• The shape of the low ν cross section is determined by the momentum 
distribution of the nucleons.

• As Q2 >> inelastic scattering from the nucleons begins to dominate
• We can use x and Q2 as knobs to dial the relative contribution of QES 
and DIS.

The quasielastic peak 
(QE) is broadened by 
the Fermi-motion of the 
struck nucleon.

The quasielastic 
contribution dominates 
the cross section at low 
energy loss (ν) even at 
moderate to high Q2.

3He SLAC (1979)
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A dependence: higher internal momenta 
broadens the peak
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Scaling

• Scaling refers to the dependence of a cross section, in certain 
kinematic regions, on a single variable. If the data scales in the single 
variable then it validates the assumptions about the underlying physics 
and scale-breaking provides information about conditions that go 
beyond the assumptions. 

• At moderate Q2 inclusive data from nuclei has been well described in 
terms y-scaling, one that arises from the assumption that the electron 
scatters from quasi-free nucleons.

• We expect that as Q2 increases we should see for evidence (x-scaling) 
that we are scattering from a quark that has obtained its momenta 
from interactions with partons in other nucleons. These are super-fast 
quarks.
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Classical Scaling

9

Scale and Dimension

(a) (b)
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*“ Fig. I. Two extinct ntammals: (a) Neohipparion, a small American horse and (b)

Mastodon, a large, elephant-like animal, illustrating that the bones of heavier

animals are proportionately stouter and thus proportionately stronger.

ders[and [hc gross features of [he biological

world: indeed. the general SIZCand shape of

animals and plants can bc viewed as na(urc’s

way of rcspondtng 10 the constraints of gral’ -

Ity. surface phenomena. VISCOUSflow. and

the Iikc. For example. one can understand

wh> man canno[ fly under his own muscular

power. why small animals leap as high as

Iargcr ones. and so on.

.4 classic example is the way melabolic

rale varws from animal 10 animal. .4

measure B of metabolic ralc IS simply [hc

heat lost by a body in a smad> inac[}vc s[atc.

which can bc cxpcclcd lo be dominated by

lhc surface IMTccIsofswcating and radiation.

S}mboltcally. (hercforc. one CXPCCIS

El x Lt”2”, The data (plotted Iogari[hmically

In Fig. 2) show that mctabollc rate does

“The concept of similitude is usuolly attributed to

Newton. who first spelled it out in the Principia

when deoling with grovitotiosrol attraction. Ott

reading the appropriate sect ion it is clear that this

was introduced only as a passing remark and does

not ha tsethe same profound content as the remarks

of Galileo.

f This amsssierRobservation was brought to my atreer-

tion by (’hris Llewellyn Smith.

: This relationship with a slopeof 3/4 is known as

Kfeiber’s law (M. KIeiber, Hilgardia 6(1932) :31S),
whereas the areo law is usually atrributtd trsRubner

(M. Rubrrer, 7.eilwhrift fur 13inloEie (%lunich)
19(1883):s3s).

tndccd scale. Iha[ is. all animals IIC on a

slnglc cur\c In spite of [hc fact {hat an

elephant is ncl(hcr a blown-up mouse nor a

blown-up chimparwcc. However. [hc SIOPCof

Ihc tscsI-fi I curve (the solid Ilnc) is closer 10

3/4 Ihan 10 2/3. indicating tha( cfl_cctsother

than [hc pure geomc’try of surface dc-

pcndcncc arc at work.$

II IS nol my purpose here [o discuss why

this is so but ralhcr 10 emphasize the im-

portance of a scaling curve not only for estab-

lishing the scaling phenomenon itself but for

revealing dcvla!lorrs from some nalvc

prediction (such as the surface law shown as

~hc dashed Iinc in Fig. 2). Typically, dcvia-

[Ions from a simple gcomelr]cal or

kinematical analysis reflect the dynamics of

the syslcm and can only be understood by

examining II in more detail. Put slightly dif-

ferently. onc can view deviations from naive

scaling asa probe of the dynamics.

Thcconversc of this IS also lruc: generally.

onc canno{ draw conclusions concerning

dynamtcs from naive scal]ng. .4s an lllustra-

[ion of this I now wan[ to discuss some

simple aspccls of birds’ CWS. I will focus on

[hc qucs{ion of breathing during incubation

and how ccflain physical variables scale

from hlrd to bird. Flgurc 3. adaplcd from a

,s(Ie}~II(h .l)ncrl[a)i arliclc by Hcrmann

Rahn, Amos Ar. and Charles V. Paganclli

en!illcd “HOW Bird Eggs Breathe.”- shows Ihe

dependence of okygcn conductance K and

pore lcng~h / (Iha[ Is. shell Ihickness) on cgg

mass LJ”.The aulhors. noting the smaller

slope for /. conclude that ““pore Icng[h

probably increases slower because the egg-

shell must bc thin enough for lhc embryo to

hatch.’” This is clearly a dynamical con-

clusion! However. is II warranted’?

From nali c gcomctnc sc’allng onc c\pccIs

Iha[ for slm]lar eggs / x [1”1‘. which IS In

rcasonahlc agrccmcn( wl(h the data: a best ti~

([he slratght Ilnc In the figure) acluall) gi\es /

X1’1 ‘1’. Since these data for pore Icngth agree

rcasorratrly WCII wi~h geometric scaling. no

djwuJt71[u/ conclusion (such as the shell be-

ing Ihln enough for [hc cgg 10 halch) can bc

drawn. Ironically. rather [ban showing an

anomalously slow growth wilh cgg mass. ~hc

da~a for / acluall> manlfcsl an anomalous}

fast growlh (().4 ~crsus ().33). not so dis-

similar from the example of ~hc mctabollc

ralc!

What aboul Ihc behavior of the conduc-

tance. for which A’ x J4’’9’?This rela~ionship

can also bc understood on geometric

grounds, (onductancc IS proporlmnal 10 ~hc

[/Mu/ available pore area and In\erscl}

proportional 10 pore Icnglh, Howc\er. [oIal

pore area IS made up of two factors: the tolal

numbcrofporcs Ilmcs the area of Individual

pores. If onc assumes that Ihc number of

pores frcr IInll urw rcmalns constanl from

bird 10 bird (a reasonable assumption consls-

tcnl with other data). then wc have Iwo

factors that scale like area and one ~hat

1,0S .AI.,\\loS SCIEN(’E Summer/Foil 1984 5

Galileo realized that that if one 
simply scaled up an animals size 
its weight would increase 
significantly faster than its 
strength, “....you can plainly see 
the impossibility of increasing 
the size of structures to vast 
dimensions...if his height be 
increased inordinately, he will 
fall and be crushed under his 
own weight”

Strength

Weight
∝

A

V
∝

1

l
∝

1

W1/3

Smaller animals appear 
stronger

Explains why small animals can 
leap as high as large one ...

Neohipparion (small horse) Mastodon

G. West, LANL report



Metabolism
• How does the metabolic 

rate (B) vary from 
animal to animal?

• B = heat lost by a body 
in  steady inactive state

• Should be dominated 
by the surface 
affects of sweating 
and radiation
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scales Inversely as Icngth. One thus expects
~ ~ ~~~.2/J)2,J4.1/l = LJ’.again In reasonable

agreemcnl wl~h tbc data.

Dimensional Analysis. The physical con-

tenl of scaling IS very often ~ormulaled in

terms of the language of dimensional analy-

sis. The seminal idea seems to be due to

Fourier. He is. ofcoursc. most famous for [he

in~entlon ol_’’Four]cr analysis.” introduced

In hls grea~ Ircallsc 7’hc~w/c lna/!’/(qfw dc /u

(’hu/mr. first publlshcd in Parus in 1822.

However. II IS generally not appreciated that

this same book contains another great con-

tribution. namcl}. {he usc ofdirncnsions for

ph>slcal quan[lllcs. Ii is the ght~st 01’Fourlcr

that IS the scourge of all freshman physics

majors. Ior 1[ v.as hc who iirst rcall.zcd that

even ph! slcal quantlly “has rmc di)t?cm$lfm

proper lo I[sclf. ~nd [hat ihc (errns ofone and

[he same cqua(ion could not bc compared. if

~hc} had not the same c.Yp~Jncn/ {I(

(111)1(’tl)l(lll. ” Hc goes on: “W’C have in-

troduced Ihls conwdera[ion ..10 vcnf} the

anal>sls II IS ~hc cqulvalcnt of the funda-

mental Icmmaswhlch lhe Grccks have Icfi us

ul[hout proof.”’ lndmd 1[ )s! (’heck the

dlmcnslon$!-the rall)ing call of all

ph)siclsts (and. hopefully. all cnglrwcrs).

Howe\ cr. it was only much Iatcr [hat

ph!slclsts twgan to usc the “’method of

dimensions” [o \(JIc ph! steal problems. In a

famous paper on the subject puhllshed In
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Fig. 2. Metabolic rate, measured as heat produced by the body in a steady state,

plotted logarithmically against body weight. An analysis based on a surface

dependence for the rate predicts a scaling curve with slope equal to 2/3 (dashed

line) whereas the actual scaling curve has a slope equal to 3/4. Such deviation from

simple geometrical scaling is indicative of other effects at work. (Figure based on

one by Thomas McMahon, Science 179(1973):1201-1204 who, in turn, adapted it

from M. Kleiber, Hilgardia 6(1932) :315.)
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Egg Mass (g)

Fig. 3. Logarithmic plot of t wo parameters relevant to the breathing of birds’ eggs

durirrg incubation: the conductance of oxygen through the shell and the pore length

(or shell thickness) as a function of egg mass. Both plots have slopes close to those

predicted by simple geometrical scaling analyses. (Figure adapted from H. Rahn,

A. Ar, and C. V. Paganel[i, Scientific American 240(February 1979) :46-55.)

Summer / Fall 1984 1.OS .tt.,4 \ l(XSCl ENCE

.-..

B ∝ W2/3 Note that best fit slope is ≈ 3/4
Something other than pure geometry is playing a 
role

Deviations from the geometrical or kinematic analysis reflects the dynamics of 
the system.
One can view deviations from naive scaling as a probe of the dynamics



Respiration

• Can we understand this?
• Pore length = thickness 

of shell suggests its 
strength = > W1/3.

• Conductance ∝ total 
pore area and ∝ 1/pore 
length

11
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Assume pore spacing the same from bird to bird, then the two 
factors go as Surface area (W2/3) and 1/l (1/W1/3)

K ∝

W2/3

W1/3
= W



Selecting the relevant variables
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The Dace, a fresh water fish

Knut Schmidt-Nielsen, from Scaling: Why is Animal Size So Important?

Scaling and scaling violations 
reveal information about the 
dynamics of the system



Scaling in DIS
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Ratio of measured 
cross-section to 
pointlike prediction 
for the proton = 
form factor! 

“Scaling” –in this regime,the 
form factors are 
approximately equal and are 
almost independent 
of momentum transfer...

Invariant mass of the 
final hadronic state

Existence of partons (quarks) revealed by DIS at 
SLAC in 1960’s



Quarks AND Gluons

14

Scaling

Scaling Violations
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!"#$%&'(%)*+ !"#$%&'())!*'+,-.,'/0'(12(3'45.6708'())!

9:;#'"805<=<6-'/('>,., (1?@)?)!

/('A6B<-,.0='586==2=05.<6-

;,-C0'<-'DE')F))))@'G'@

;,-C0'<-'H('I@'2'J))))'K0L(

M0,=N80A'O<.P'I(2JQ'R805<=<6-

><805.ST'=0-=<.<U0'.6'=NB'6V',SS'WN,8X='
,-A',-.<2WN,8X=

%-A<805.ST'=0-=<.<U0'.6'CSN6-='U<,'H&>'
8,A<,.<6-'2'=5,S<-C'U<6S,.<6-=

F2 dominates cross-section 

Range in x: 0.00001 – 1 

Range in Q2 ~1 - 30000 GeV2

 
Measured with ~2-3% precision 

Directly sensitive to sum of all 
quarks and anti-quarks
 
Indirectly sensitive to gluons via 
QCD radiation - scaling 
violations



y-scaling in inclusive electron scattering (3He)

F (y) = σexp

(Zσ̃p+N σ̃n) · K n(k) = −
1

2πy
dF (y)

dy

y is the momentum of the struck nucleon parallel to the momentum transfer and is

determined from energy conservation. Assumption is that we are scattering from a "quasi"

free proton or neutron in the nucleus. We find momenta on the order of 1 GeV/c !

Correlations are the source of high momenta

in the nucleus – probe extreme and rare condi-

tions inside the nuclear volume when the nu-

cleons are nearly overlapping.

Assumption:  scattering takes place from a quasi-free proton or neutron in the 
nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:
y ≈ -q/2 + mν/q

y-scaling in inclusive electron scattering from 3He

16



d2σ

dEdΩe′
=

A∑
i=1

∫
d"k

∫
dEs σei Si(Es, k)

× δ(ω − Es + MA − (M2 + "k′ 2)1/2 − (M2
A−1 +"k2)1/2),

σei = f(q,ω,#k, Es)

M∗

A = [(ω +MA)
2
− q2]1/2

kmin and kmax  are determined from cos θ = ±1

ω − Es +MA = (M2 + q2 + k2 ± 2kq)1/2 + (M2
A−1 + k2)1/2

Emin = MA−1 +M − MA, Emax = M∗

A −MA

d2σ

dEdΩe′
= 2π

A∑

i=1

∫Emax

Emin

dEs

∫kmax

kmin

dk k σei Si(Es, k) k

($
%
%
&

∂ω

∂ cos θkq

$
%
%
&

)
−1

︸ ) ︸
K

Scaling and Correlations

dσQE

dΩdω
=

∫

dEmdp(Zσ̃p + N σ̃n)

×δ(MA − EB + ν − EX)P (p, Em).

EM is the missing energy and determines the invariant
mass of MB such that Em = MB + M − MA and EX =
√

M 2 + (p2 + q2). When B is the A−1 ground state then
the missing energy is minimal Emin ≡ MA−1 + M − MA.

k

k’

X

B

p

A

q

The particular case when Em = Emin defines the y-scaling
variable

y = −
W 2 + M2

A−1 − M2

2W 2

(

|q|− (MA + ν)

[

1 −
4W 2M2

A−1

(W 2 + M2
A−1 − M2)2

]1/2
)

XEMPT Meeting Donal Day

K = q/(M2 + (!k + !q)2)1/2

17

y-scaling in PWIA



• lower limit becomes y= y(q,ω)
• upper limits grows with q and because momentum distributions are 

steeply peaked, can be replaced with ∞
• Assume S(Es,k) is isospin independent and neglect Es dependence of σei 

and kinematic factor K and pull outside
• At very large q and ω,  we can let Emax= ∞, and integral over Es can be 

done
n(k) =

∫
S(Es, k) dEs

Now we can 
write

where 

d2σ

dEdΩe′
= (Z σ′

ep + N σ′

en)K
′ F(y)

F(y) = 2π

∫∞
|y|
n(k)kdk

Scaling (independent of Q2) of 
QES  provides direct access to 
momentum distribution

18
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Assumptions & Potential 
Scale Breaking Mechanisms

• No FSI

• No internal excitation of (A-1)

• Full strength of Spectral function can be integrated over at 
finite q

• No inelastic processes

• No medium modifications

19



Assumption:  scattering takes place from a quasi-free 
proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to 
the momentum transfer:
y ≈ -q/2 + mν/q

F(y) =
σexp

(Zσp + Nσn)
· K

n(k) = −
1

2πy
dF(y)
dy

20



Helium-3

Hanover group, T = 0 and T = 1 pieces (right)

XEMPT Meeting Donal Day

In nuclei the 
distribution of the 
strength in energy 
complicates the 
relationship between 
the scaling function 
and n(k).

 The spectral 
function S(k,E) for 
3He

21



Theoretical 3He F(y) integrated at increasing q

q = 0.5

q = ∞

ξM = ∞

Is the energy 
distribution as 
calculated 
(scaling occurs at 
much lower q)?

Do other 
processes play a 
role?

FSI or/and DIS

As q increases, more and more of the spectral function S(k,E) is integrated.
22



3He3He

IronIron
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Scaling of the response function shows up 
in a variety of disciplines. Scaling in 
inclusive neutron scattering from atoms 
provides access to the momentum 
distributions.

Momentum distributions are “distorted” 
by the presence of FSI

FSI have a 1/q dependence

y-scaling as a test for presence of FSI

Weinstein & Negele PRL 49 1016 (1982)
24



Convergence of  F(y,q)
3He

3He

Fe

Fe

25



658 H. Meyer-Hajduk et al. / Inclusive electron scairering 
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E=3.26 GEV 
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Fig. 11. Differential cross section of inclusive electron scattering from ‘He as function of the energy loss 

0 of the electron. Results of fig. 7 are repeated. Compared are theoretical predictions based on the two 

different models of sect. 3.2.1 and 3.2.2 for nucleonic structure functions in the region of pion production. 

The solid curve refers to the meson-theoretic model of sect. 3.2.2, the dashed curve to the phenomenologi- 

cal model of sect. 3.2.1. In contrast to the results of fig. 7 the nucleonic form factors are taken from ref. ‘“I. 
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D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. (18) and (19) describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of
hadrons other than protons and neutrons one has to re-
place wN

1 and wN
2 given by Eqs. (23) and (24) with the

inelastic nucleon structure functions extracted from the
analysis of electron-proton and electron-deuteron scat-
tering data (Bodek and Ritchie, 1981). The resulting IA
cross section can be written as in Eq. (6), the two nuclear
structure functions W1 and W2 being given by (Benhar
et al., 1997)

W1(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃) +
1
2

wp
2(|q|, ω̃)

m2

|k × q|2

|q|2

]
+ . . .

}
(35)

and

W2(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃)
q2

|q|2

(
q2

q̃2
− 1

)

+
wp

2(|q|, ω̃)
m2

(
q4

|q|4

(
Ek − ω̃

Ekω̃ − k · q
q̃2

)2

− 1
2

q2

|q|2
|k × q|2
|q|2

)]
+ . . .

}
, (36)

where the dots denote the neutron contributions.
Eqs. (35) and (36) are obtained using the prescription
of Eq. (26) (de Forest, 1983) to preserve gauge invari-
ance. Note that the standard expression (Atwood and
West, 1973), widely used in studies of nuclear effects in
deep inelastic scattering, can be recovered from the above
equations replacing ω̃ → ω and Ek → MA − ER.

As an example, Fig. 5 shows the quasi-elastic (dashed
line) and total (solid line) inclusive cross sections of uni-
form nuclear matter, at beam energy Ee = 3.595 GeV
and scattering angle θ = 30◦, evaluated using a phe-
nomenological fit of the nucleon structure functions wN

1
and wN

2 (Bodek and Ritchie, 1981) and the above men-
tioned spectral function (Benhar et al., 1989).

The data show that the transition from the quasi elas-
tic to the inelastic regime, including resonant and nonres-
onant pion production as well as deep inelastic processes,
is a smooth one, thus suggesting the possibility of a uni-
fied representation.

The approach based on NMBT and the IA yields a
good description of the measured cross section at energy
loss ω >∼ 1 GeV, corresponding to x <∼ 1.3 (note that in
the kinematics of Fig. 5 the top od the quasi free bump
corresponds to ω = ωQE ∼ 1.4 GeV). On the other hand,
the data at lower energy loss are largely underestimated.

FIG. 5 Inclusive electron scattering cross section at Ee =
3.595GeV and θ = 30◦. The data points represent the extrap-
olated nuclear matter cross section (Day et al., 1989) while
the solid and dashed lines show the results of IA calculations
carried out with and without inclusion of the inelastic contri-
butions, respectively (Benhar et al., 1991).

The failure of IA calculations to explain the measured
cross sections at ω % ωQE has long been recognized, and
confirmed by a number of theoretical studies, carried out
using highly realistic spectral functions (Benhar et al.,
1989; Ciofi degli Atti et al., 1992; Meier-Hajduk et al.,
1983), see e.g. fig.6. It has to be ascribed to FSI between
the struck nucleon and the spectator particles, that move
strength from the region of the quasi free bump to the
low ω tail. This mechanism will be analyzed in the next
Section.

FIG. 6 Inclusive electron scattering cross section at Ee =
7.26GeV and θ = 8◦ for 3He. The data points are from (Day
et al., 1979), the solid line shows the IA calculation based on
the 3He spectral function (Meier-Hajduk et al., 1983). Ap-
proximate values for the scaling variable x are indicated on
top.

In conclusion, NMBT and the IA provide a consistent
and computationally viable approach, yielding a quanti-
tative description of the data in both the quasi elastic
and inelastic regime, with the only exception of the re-
gion of very low energy loss. Theoretical studies in which

In (e,e’) the failure of IA calculations to explain dσ at small energy loss

Meier-Hadjuk NPA 395, 332 1983

In (e,e’p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

FSI has two effects: energy  shift and a redistribution of strength

Benhar et al proposed approach based on NMBT and Correlated Glauber 
Approximation
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distribution function g(ri, rj) results in a strong quench-
ing of the tails and an enhancement of the peak of Fq,
leading to a significant suppression of FSI effects.

The effect of FSI is illustrated in Fig. 12, showing
the inclusive cross section of uniform nuclear matter
at a beam energy Ee = 3.595 GeV and a scattering
angle θ = 30◦, corresponding to momentum transfer
|q| ∼ 2 GeV/c. Comparison between theory and the

FIG. 12 Inclusive electron scattering cross section at Ee =
3.595 GeV and θ = 30◦. The data points represent the ex-
trapolated nuclear matter cross section (Day et al., 1989),
while the solid and dashed lines show the results obtained
including FSI effects, with and without taking into account
correlation effects. For comparison, the IA cross section is
also shown by the dot-dash line (Benhar et al., 1991).

data in Fig. 12 clearly show that at ω < 1.1 GeV, where
quasielastic scattering dominates6 and which correspond
to x > 1, x = Q2/2mω being the Bjorken scaling vari-
able, FSI effects are large and must be taken into account.
The results obtained within the CGA are in good agree-
ment with the data in the region ω > 800 MeV, i.e. for
x <

∼ 1.8, while at higher x the experimental cross sec-
tion is largely overestimated. The dashed line has been
obtained neglecting the effect of dynamical correlations
on the distribution function g(ri, rj). Comparison be-
tween the solid and dashed lines provides a measure of
the quenching of FSI due to NN correlations.

The ability of the CGA to provide a quantitative un-
derstanding of FSI in the region x < 2 is further illus-
trated in Fig. 13, showing the cross section ratio

R =
dσ(e +56Fe → e′ + X)

dσ(e +2H → e′ + X)

2

56
, (51)

at Ee = 3.595 GeV and θ = 25◦. Note that R of Eq. (51)
is only defined up to y ∼–700 MeV/c, corresponding to

6 In the kinematics of Fig. 12, inelastic processes only contribute
∼ 5% of the inclusive cross section at ω = 1.1 GeV, and become
negligibly small at lower ω.

FIG. 13 Ratios of inclusive cross sections of iron and deu-
terium at Ee = 3.595 GeV and θ = 25◦. Solid line: full cal-
culation; dashed line: IA calculation, neglecting FSI in both
iron and deuteron; dot-dash line: calculation carried out using
the approximate spectral function of Eq. (37) (Benhar et al.,
1995b).

x = 2, the kinematical limit for inclusive scattering off
an A=2 target (for the definition of y see Sec. VI).

The solid line in Fig. 13 corresponds to the full CGA
calculation, providing a good description of the experi-
ments over the whole range of y, whereas the IA results,
represented by the dashed line, lie well below the data
at y < −200 MeV/c (x > 1.5). For comparison, Fig. 13
also shows the results obtained using the approximate
spectral function of Eq. (37), which turn out to largely
overestimate the data at negative y.

Notwithstanding its success in describing the existing
inclusive data at large negative y, the CGA appears to
consistently overestimate FSI effects at larger −y. As the
validity of the eikonal approximation is well established
in the kinematical region apposite to scattering of few
GeV electrons, possible corrections to the CGA scheme
are likely to be ascribable either to modifications of the
NN scattering amplitude or to the inadequacy of the ap-
proximations leading to the convolution expression for
the cross section.

It has been pointed out (Benhar et al., 1991) that the
use of the free-space amplitude to describe NN scattering
in the nuclear medium may be questionable. Pauli block-
ing and dispersive corrections are known to be important
at moderate energies (Pandharipande and Pieper, 1992).
However, their effects on the calculated inclusive cross
section have been found to be small in the kinematical
region corresponding to |q| >

∼ 2 GeV/c, and decrease as
|q| increases (Benhar et al., 1995a). Corrections to the
amplitude associated with its extrapolation to off-shell
energies are also expected to be small at |q| > 2 GeV/c
(Benhar and Liuti, 1996).

Modifications of the free-space NN cross section may
also originate from the internal structure of the nucleon.

FSI, correlation effects

FSI

IA

NM at 3.595, 30o

4He at 3.595, 30o

Final State Interactions in CGA

Benhar et al. PRC 44, 2328

Benhar, Pandharipande, PRC 47, 2218

Benhar et al. PLB 3443, 47
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Sensitivity to SRC increase with Q2 and x
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#  - very sensitive, especially at higher x values 
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σ(x, Q2) =
A∑

j=1

A
1
j
aj(A)σj(x, Q2)

=
A
2
a2(A)σ2(x, Q2) +

A
3
a3(A)σ3(x, Q2) +

...

In the region where correlations 
should dominate, large x,

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. 
It should fall rapidly with j as nuclei are dilute.

⇒
2
A
σA(x, Q2)
σD(x, Q2)

= a2(A)

!"""#
1<x≤2

3
A

σA(x, Q2)
σA=3(x, Q2)

= a3(A)

!"""#
2<x≤3

In the ratios, off-shell effects and 
FSI largely cancel.

CS Ratios and SRC

σ2(x, Q2) = σeD(x, Q2) and σj(x, Q2) = 0 for x > j.

aj(A) is proportional
to probability of finding
a j-nucleon correlation
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Ratios and SRC 
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FIG. 4: Cross section (A/3He) ratios at large x as measured in CLAS.

state interactions, due to the different mix of nn, np, and pp correlations in non-isoscalar nuclei.
However, there are calculations indicating that there are significant final state interactions that do
not vanish rapidly as Q2 increases, and which do not cancel in the target ratios [19] (i.e. do not come
from short range configurations that are identical in all nuclei). This calculation indicates that the
FSI (when including inelastic channels) has a very weak Q2 dependence and will persist, challenging
our interpretation of the impulse approximation analysis. In addition, it predicts that the FSI effects
will increase the x > 1.5 cross section in iron by approximately a factor of ten, and that even in the
ratio of iron to deuterium, there is a factor of five effect from these FSIs. An important portion of
the proposed measurement is the ability to test these precisions of FSIs by extracting absolute cross
sections for x > 1.5 on a variety of few-body (and heavy) nuclei over a range of Q2.

For the deuteron, which is dominated by the simple two-body breakup assumed in an impulse
approximation analysis, we can extract the nucleon momentum distribution from the inclusive data
without the complications caused by neglecting the separation energy of the full spectral function.
The momentum distribution for the deuteron as extracted from experiment E89-008 is shown in
Fig. 5 [3]. The normalization of the extracted momentum distribution is consistent with unity,
and the high momentum components are in good agreement with calculations based on modern
two-body nucleon–nucleon potentials. This sets limits on the impact of FSI, even in the region
dominated by short range correlations, indicating that the scattering is consistent with the impulse
approximation and that final state interactions much smaller than those observed in coincidence
A(e,e’p) measurements, or those predicted in some calculations. In the proposed measurements, we
will extract absolute cross sections for 2H, 3He, and 4He, not available for the CLAS results, which
will allow us to set limits on the size (and A dependence) of final state interactions.

The extension of these ratio measurements to higher Q2 will allow us to better test the x and Q2

aj(A) is proportional
to probability of finding
a j-nucleon correlation

CLAS data
Egiyan et al., PRL 96, 
082501, 2006

2
A
σA
σD

= a2(A); (1.4 < x < 2.0)

FSDS, Phys.Rev.C48:2451-2461,1993

α2N ≈20%
α3N ≈1%
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The solution
• Direct ratios to 2H, 3He, 4He out to large x and over wide 

range of Q2

• Study Q2, A dependence (FSI)

• Absolute Cross section to test exact calculations and FSI

• Extrapolation to NM

Arguments about role of FSI

Benhar et al.: FSI includes a 
piece that has a weak Q2 
dependence, Benhar et al. PLB 3443, 47

There is the cancellation of 
two large factors (≈ 3) that 
bring the theory to describe 
the data. These factors are Q2 
and A dependent
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Sensitivity to SRC increase with Q2 and x
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cover the full resonance region. The Q2 range covered by
our data set is between 0.3 and 5 !GeV"c#2. The overall
systematic uncertainty in the measured cross sections due
to target density, beam charge, beam energy, spectrometer
acceptance, radiative corrections, and detection efficiency
is 3.5% and larger than the statistical uncertainties [8–10].

We extracted the structure function F2 from the
measured differential cross sections s ! d3s

dVdE0 like
F2 $ s 3 !1 1 R#"!1 1 eR# [11]. Here e is the virtual-
photon polarization and R the ratio of longitudinal to
transverse cross sections. We used a value of R ! 0.2, but
the results are consistent within 2% if a parametrization
of this quantity based on deep inelastic scattering data at
moderate Q2 is utilized [12]. However, we note that this
quantity is presently known only at the 6100% level in
the nucleon resonance region above Q2 % 1 !GeV"c#2.

Samples of the extracted F2 data in the nucleon reso-
nance region are shown in Fig. 1a for the hydrogen target
and in Fig. 1b for the deuterium target, as functions of
the Nachtmann scaling variable j. These figures also in-
clude some low Q2 data from SLAC [13,14]. In terms of
the Nachtmann variable j ! 2x"!1 1

p

1 1 4M2x2"Q2 #
[15], where M is the nucleon mass, a pattern of scaling vi-
olations has been formulated within a QCD framework [2].
The variable j takes target-mass corrections into account,
necessary as the quarks cannot be treated as massless par-
tons for low to moderate momentum transfers. Note that,
for low x or large Q2, the scaling variable j is almost iden-
tical to the Bjorken scaling variable x.

FIG. 1 (color). Extracted F2 data in the nucleon resonance re-
gion for hydrogen (a) and deuterium (b) targets, as functions
of the Nachtmann scaling variable j. For clarity, only a selec-
tion of the data is shown here. The solid curves indicate the
result of the NMC fit to deep inelastic data for a fixed Q2 !
10 !GeV"c#2 [16].

It is clear from Fig. 1 that the data oscillate around a
global curve. This reiterates the well-known local duality
picture; the data at various values of Q2 and W2 average
to a smooth curve if expressed in terms of j. The solid
curve shown is a global fit to the world’s deep inelastic data
by the New Muon Collaboration (NMC) [16] for a fixed
Q2 ! 10 !GeV"c#2 (NMC10, solid). Previous analyses of
local duality have concentrated on a comparison of deep
inelastic constrained curves with nucleon resonance data
for Q2 $ 1 !GeV"c#2, corresponding to a lower cutoff of
j % 0.3. However, as one can see from Fig. 1, the reso-
nance data still seem to oscillate around a global curve,
even in the region j # 0.3. This suggests that also in this
region the effect of the higher-twist terms is reduced if av-
eraged over the full resonance region—consistent with the
earlier QCD analysis of the j . 0.3 region [2]. Note that,
for sake of visual clarity, we did not include all spectra.

From now on we will concentrate on the region of
j # 0.3 0.3. We initially construct a scaling curve rep-
resenting the average of the resonance data in the region
M2 # W2 , 4 GeV2, for Q2 , 5 !GeV"c#2. The aver-
age curve for the hydrogen data is shown as a shaded band
in Fig. 2, where the width of the band takes the systematic
uncertainties of the procedure into account. Note that the

FIG. 2 (color). The shaded band indicates the F2 scaling curve
obtained by averaging over all the proton resonance data (see
text). The width indicates the uncertainty in the averaging pro-
cedure. The solid (dashed) curve indicates the result of the
NMC fit to deep inelastic data for a fixed Q2 ! 10 !GeV"c#2

&2 !GeV"c#2'. The dot-dashed curve at Q2 ! 0.40 !GeV"c#2

shows F2 obtained from the input valencelike quark distribu-
tions (i.e., valence and sea quarks) of Ref. [17]. Similarly, the
dot-dashed curves at Q2 ! 1.40 and 3.00 !GeV"c#2 are evolved
to Q2 values close to those of our F2 scaling curve. The dotted
curve shows F2 obtained from the input valence-quark distribu-
tions from Ref. [17] only.
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Duality= resonances average to DIS

SLAC data, Bloom/Gilman
JLAB data, Niculescu et al.
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x and ξ scaling
An alternative view is suggested when the data (deuteron) is presented 
in terms of scattering from individual quarks

νWA
2 versus x νWA

2 versus ξ

νWA
2 = ν ·

σexp

σM

[
1 + 2 tan2(θ/2) ·

(
1 + ν2/Q2

1 + R

)]−1

x =
Q2

2Mν
ξ =

2x

1 +
√
1 + 4M2x2/Q2

→ x

2H
2H
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FA2 (ξ) =
∫A

ξ
dzF(z)Fn2(ξ/z)

︸ # ︸
averaging

The Nachtmann variable (fraction ξ of 
nucleon  light cone momentum  p+)  has 
been shown to be the variable in which  
logarithmic violations of scaling in DIS 
should be studied.

Local duality (averaging over finite range 
in x) should also be valid for elastic peak 
at x = 1 if analyzed in ξ

νWA
2 versus x

2.5 
3.3 
4.1
5.2
6.4
7.4

νWA
2 versus ξ

12C

12C

Evidently the inelastic and quasielastic 
contributions cooperate to produce ξ 
scaling.  Is this duality?
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Medium Modifications generated by high density configurations

> 5 times nuclear 
matter densities 

0.6 fm separation 

1.7 fm separation 

Nucleon separation is 
limited by the short 
range repulsive core 

High Density Configurations

nucleon charge radius ~ 0.86 fm

Ave. separation ~1.7 fm in heavy nuclei

Nucleons are already closely packed in nuclei

Nucleon separation is limited by

the short range repulsive core

Average
nuclear
density

1.7 fm separation

Potential between

two nucleons

r [fm]

V(r)

~1 fm

0

1.2 fm separation

3x nuclear
matter

0.6 fm separation

>5 times
nuclear matter
densities

Even for a 1 fm separation, the
central density is ~4x nuclear matter.

Comparable to neutron star densities!

High enough to modify nucleon structure?

Comparable to neutron star densities! 

High enough to modify nucleon structure?

Gold nucleus

R = 1.2A1/3

Volume =
4

3
πR

3
! 1400fm
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A single nucleon, r = 1 fm, has a volume of 4.2 fm3 
197 times 4.2 fm3 ≈ 830 fm3

60% of the volume is occupied - very closely packed!

Even for a 1 fm separation, 
the central density is about 

4x nuclear matter

To which nucleon does the quark belong?36



Sensitivity to non-hadronic components

13

out as source of the EMC effect, because they would require very large non-hadronic components
which were often excluded by other measurements. Figure 12 provides a simple example: It shows
the nuclear structure function for deuterium, as calculated from a convolution of neutron and proton
structure functions (red), and compares it to the structure function obtained by assuming that 5%
of the deuteron wave function is described by a 6-quark bag, using the model of Mulders and
Thomas [34] for the quark distribution for the 6-q bag. The difference is at most 2% throughout
the region of large EMC effect (0.3 < x < 0.8), and so one would need an extremely large exotic
component in nuclei to explain the EMC effect in terms of this kind of non-hadronic contribution in
nuclei.

FIG. 12: The left figure shows the Deuteron valence quark distribution from a convolution of proton and neutron quark
distributions (dashed red), and with the inclusions of a 5% 6-quark bag component (blue). The dotted green line shows the
contribution from the 6-quark bag component. The right figure shows the ratio of F2 with the 6-quark bag contribution to F2

with no 6-quark contribution.

Many of these early models attempted to explain the entire EMC effect in terms of exotic expla-
nations, while we now know that much (if not all) of the effect at large x is due to binding. While
there is insufficient data at present to make precise comparisons between calculations of binding
effects and the data, it is clear that non-hadronic degrees of freedom do not need to be large enough
to explain the 10-20% modifications to the quark distributions in nuclei.

One can gain orders of magnitude more sensitivity to such configurations by examining the struc-
ture function at x > 1. A six-quark bag contribution breaks down the individual identities of the
two nucleons, allowing a greater sharing of momentum between the quarks in the two nucleons and
enhancing the distribution of high-momentum quarks. While this has a small impact in the region of
the EMC effect, it has a much larger effect at x > 1, where the quark distributions fall off extremely
rapidly. Figure 13 shows the same models of the quark distributions in deuterium as Fig. 12: A
convolution of proton and neutron quark distributions, and a mix of 95% proton plus neutron, and
5% contribution from a 6-quark bag. In this case, the quark distribution for the simple convolu-
tion model dies off rapidly above x = 1, and so the contribution from the 6-quark bag can lead to
enhancements of 100’s of percent in the structure function, compared to the percent level effects
observed for x < 1. While we show here the example of a 6-quark bag, any configuration in which
there is direct sharing of the momentum between the quarks in the two nucleons will lead to an
enhancement of this kind, with a similar increase in sensitivity in these large x structure functions.
Larger effects might be observed in heavier nuclei, but one needs a quantitative understanding of the
distribution of high momentum nucleons to provide a reliable “baseline” calculation for the purely
hadronic picture. Measurements of quasielastic scattering at large missing momentum, planned for 6
and 12 GeV, combined with the large x ratios proposed here, should provide significant information

14

on the short range correlations that provide the high-momentum part of the spectral function, and
allow us to separate the contribution of superfast quarks that come from high-momentum nucleons
and those that come from other configurations in nuclei.

FIG. 13: Same as Fig. 12, but showing the effect of a small 6-quark bag component in the large x region. The blue circles
indicated the projected measurements, with uncertainties smaller than the points shown.

Here we will be DIS dominated at least up to x = 1.3; however, for higher x values, the quality of
scaling at lower Q2 indicates that deviations from the scaling limit should be relatively small even
for x = 1.4 − 1.5 . Our measurements of the Q2-dependence for selected targets will allow us to
investigate this.

We can see from Fig. 6 that for large x and Q2, the scattering is dominated by scattering from
the short range correlations in nuclei. This makes it clear that it will still be important to have
quantitative measurements of the contributions of short range correlations, although any uncertainty
in our knowledge of the strength and detailed structure of these contributions will partially cancel
in the ratio. It also provides another way to view the sensitivity to these non-hadronic components.
The cross section is dominated by scattering from these short range correlations, which represent
two or more nucleons in very close proximity, and therefore represents scattering from a high density
configuration in the nucleus. It is then natural that one would have much greater sensitivity to
modification of the nucleon structure when using the scattering kinematics to isolate scattering from
high density configurations, thus probing the quark structure as a function of local density, rather
than average nuclear density.

V. OTHER TOPICS OF INTEREST

In addition to providing information about short range correlations and parton distributions at
x > 1, these measurements will provide data that can be used to study duality and to make precise
measurements of the nuclear dependence of QCD moments. Current moment analyses are limited
at moderate to high Q2 values by the knowledge of the structure function at x > 1, especially for
the higher moments [35]. Combining this data with lower x measurements from duality studies of
hydrogen and deuterium will allow a more precise determination of the first several moments of the
nuclear structure function. A comparison of the moments of deuterium and hydrogen may allow a
determination of the moments for the neutron without some of the theoretical ambiguities that arise
when attempting to directly extract the neutron structure function from data on nuclei.

This data will also provide new ways to probe the details of duality in nuclei [4, 30, 36, 37]. Studies
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Two measurements (very high Q2) 
exist so far: 
CCFR (ν-C): F2(x) ∝ e-sx     s = 8

BCDMS (μ-Fe): F2(x) ∝ e-sx  s = 16 

Limited x range, poor resolution 
Limited x range, low statistics

With 11 GeV beam, we should 
be in the scaling region up to 
x≈1.4
 

Quark distributions at x > 1
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FIG. 10: CCFR distribution of events as a function of x, compared to some PDF fits (top right and lower left), and compared
to a fit of F A

2 ∝ exp (−sx), for s=8.3 (lower right).

FIG. 11: BCDMS 200 GeV muon data from C. An exponential fit of F A
2 ∝ exp (−sx)) agrees with the JLAB 89-008 data with

an exponent s # 16 when fit in ξ

dependence was in general agreement with the BCDMS measurement with F A
2 ∝ exp (−sξ) with

s # 16. However, there are significant contributions from the quasielastic peak in the vicinity of
ξ = 1 at these kinematics, and there is still some Q2 variation to the structure function fall off at
the largest Q2 values from E89-008. With the proposed measurements, we can reach Q2 values of 20
GeV2 for ξ ≥ 1, where quasielastic scattering is only a small contribution to the total cross section
and scaling violations should be much smaller than those observed in previous measurements.

B. Sensitivity to Quark Degrees of Freedom in Nuclei

The EMC effect provides clear evidence that the quark distribution in nuclei is not a simple sum
of the quark distributions of it’s constituent protons and neutrons. Many explanations of the EMC
effect were proposed which involved non-hadronic degrees of freedom in the nucleus. Many were ruled
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