HUGS Lecture Notes 2007

Donal Day University of Virginia

Lecture Caveats

- Given by an experimentalist
 - little formalism
 - provide some experimental details
 - should be pretty basic for Ph.D students
- Style
 - Informal ask questions at any time

- General Introduction
- Nuclear Inelastic Response
- Nucleon Elastic Form Factors
- Polarized Targets

Lecture Outline

- Topics
 - Why electron scattering?
 - Experimental Techniques
 - Elastic electron scattering
 - nuclear charge and magnetization densities
 - nucleon form factors
 - Quasi-elastic scattering
 - A(e,e')X
 - A(e,e'p)X
 - Deep Inelastic Scattering
 - Unpolarized
 - Polarized
 - Polarized Targets

Why use electrons?

- Electron-nucleus interaction is well known
 - QED: exact theory, point-like probe
 If using a strongly interaction probe
 (p, π); both the interaction and the
 system are unknown; further the
 probe can have internal d.o.f
- Interaction is weak, $\alpha = 1/137$
 - perturbation of nucleus small
 - reaction mechanism simple
- Interaction is known (QED): E/M interaction of electron with the charge ρ and current J densities of the nucleus
 - σ is calculable
 - solution of Dirac equation quantitative confidence

There are disadvantages

- $\sigma \propto \alpha^2 \sim 10^{-4}$, small
 - need high intensity
 - need thick targets
 - need large solid angles
- Electron mass small
 - for small λ need large accelerators
 - in the past they had poor duty factor and poor ΔE/E (resolution)
 - Radiative effects

Experimental aims:

- 1) elastic scattering
- (spin-) structure of the nucleus

form factors, charge distribution

analyzing power T_{20}

- 2) quasielastic scattering (exclusive, inclusive)
- structure of the nucleon form factors
- medium modification
- momentum distribution, occupancies
- shell structure in the nucleus
- transparency factor, color transparency
- x>1 on light to heavy nuclei, scaling
- 3) (deep) inelastic scattering
- excitation of resonances
- x-scaling of cross sections measured on different nuclei
- composition of the nucleon (gluons, quarks, spin)

very few of these topics are covered by these lectures

examine the N-N interaction

Different energy regimes,

depending on the momentum q and energy ω carried by the photon

3 cases:

- 1. low q, ω
- photon wavelength λ is long compared with the size of the nucleon.
- nucleon is seen as a point (probably a nucleus can be resolved)
- 2. higher q, ω , E ~100 MeV to ~1 GeV
- wavelength is comparable to the nucleon size.
- can resolve the finite size of the nucleon.
- 3. very high q, ω
- wavelength is much shorter than the nucleon size
- photon can resolve the internal structure of the nucleon.

Determines resolution: $\simeq \hbar c/q$

Nuclear Response Function

Electron beams

- need high energy
 - q ~ 2E sin (θ/2)
 - E ~ 0.5 -> 1 GeV for resolution 1.5/q ~ 0.2 fm
- need high duty cycle for coincidence reactions
 - for coincidence expts: accidentals ~ I^2
 - reduces rates in detectors, multiple hits, tracking
- need high beam intensity to compensate for α^2
- need small $\Delta E/E$ to separate nuclear levels
- need polarized electrons

• statistical error $\alpha \frac{1}{P_e P_t} \frac{1}{\sqrt{t}}$

Electron beams

Free space solution to Maxwell's equations

$$\vec{\nabla} \cdot \vec{E} = \frac{\partial E_z}{\partial z} = -kE_{0,z}exp[i(\omega t - kz)] = 0$$

No good for our purpose.

Exploit B.C.s => disk loaded cylindrical wave guide

http://www.desy.de/~njwalker/uspas/

- electrons are riding on a microwave (standing or travelling wave)
- source: klystron
- resonator: cavity

TM₀₁ mode: transverse magnetic field longitudinal electric field acceleration only if phase velocity = particle velocity and it arrives at the right time (phase)

in a (hollow) wave guide: v_{ϕ} > c

Klystron

- 1. The electron gun produces a flow of electrons.
- 2. The bunching cavities regulate the speed of the electrons so that they arrive in bunches at the output cavity.
- 3. The bunches of electrons excite microwaves in the output cavity of the klystron.
- The microwaves flow into the waveguide , which transports them to the accelerator.
- 5. The electrons are absorbed in the beam stop.

Linear Accelerators

- Cu-cavities
- high field gradient -> large power losses
- consequences
 - pulsed machines
 - poor duty factor, 10⁻⁴ -> 10⁻²
 - poor energy resolution of beam, 10⁻² -> 10⁻³
- Stanford, SLAC, Bates, NIKHEF, Saclay

http://www.desy.de/~njwalker/uspas/

Linac Stretchers

- Add stretchers ring to linac
 - inject pulses
 - extract during time between pulses
- get duty factor of ~0.8
- get intensities of ~20 μ A
- energy resolution still a problem

Original design for Jefferson Lab

Linac & Storage Ring

- Accumulate many pulses of linac
- internal beam of 200 mA
- use with internal targets

- good duty factor
- acceptable luminosity
- large acceptance detectors

Modern Accelerators

- Race-track microtrons
 - Room temperature Cu cavities
 - low gradient allows for CW operation
 - recirculate many times

- Superconducting cavities
 - use Nb-cavities at 2K
 - Q-values of $10^{13} \rightarrow low losses$
 - CW and a gradient of 5 10 MeV/m
 - JLAB, Darmstadt

Racetrack Microtron

18

- neighboring cavities have opposite polarity
- travel time of e to next cavity
 = 1/2f

- one accelerator
- focusing on only one path
- corrector magnets on every orbit

MAMI3 consecutive microtrons (200-800 MeV)4th stage: Double sided microtron -> 1.6 GeV

Superconducting cavity:

2 niobium (multi-) cavity

CEBAF: 2x160 cavities, 1.497 GHz, 2 K (liquid He), 7.7 MV/m

high gradients needed!

record: 51 MV/m KEK (single cell) standard: 35 MV/m problem:

magnetic field at the surface heats cavity up cleaning room:

surface ultra-smooth, scrubbed with 100 bar water beam high Q: loaded ~10⁷

intrinsic ~10¹⁰

for ILC:

20000 Nb cavities needed,

- = 500 † Nb
- = 4 years production
- = 300 M\$

CEBAF

- double-sided microtron, superconducting Nb cavities at 2K
- 7.7 MeV/m
- high Q ~10⁶
 - low losses
- energy: 0.8 6 GeV
 - spread: 5 10-5
- current: 1 120 μ A (A & C), 1nA 1 μ A (B)

spot at target: > 50 μm divergence : < 100 μrad

RF beam splitter -> 3 simultaneous beams

correlated energies independent currents

Continuous Electron Beam Accelerator Facility

Energy Measurement

energy:
$$E = \frac{c}{\theta} \int Bdl$$

needed:

- measurement of angle wire scanners survey
- field integral reference magnet/NMR measured to 10⁻⁵

accuracy of energy measurement: 2 10⁻⁴

Another method: e-p elastic (Jlab, Hall A)

Measure electron and recoil angle of the electron and proton scattered from H

target: 10–30 μm CH₂ detectors: Si strip proton: fixed at 60°, TOF measurement electron: 9° – 41° Cerenkov

beam energy
 range: 0.5 – 6 GeV
 accuracy: Δp/p < 2 10⁻⁴

All three measurements agree! arc in hall A&C, ep-method

Spectrometers/Detectors

Counter array used to detect electrons in the 1.6 counter cave. The Pb glass hosodscope, pre-radiator, TA1 and TA2 formed the total absorption counter.

.

Hall C HMS

Deflection of electrons in magnetic field

dθ

dp

 $\vec{p} + d\vec{p}$

Lorentz Force
$$\vec{F} = q\vec{v} \times \vec{B} = \frac{d\vec{p}}{dt}$$

$$d\vec{p} = q(\vec{v}dt) \times \vec{B} = qd\vec{l} \times \vec{B}$$
$$d\theta = \frac{dp}{p} = \frac{q}{p}Bdl$$
$$\implies \Delta \theta = \frac{q}{p}\int Bdl$$

Deflection $\Delta \theta$, even if B field is not uniform

Deflection in magnetic field measures the momentum

Dispersion: D = 12.4 cm/%

 \rightarrow A 1% shift from the central momentum corresponds to a deflection at the focal plane of 12.4 cm **more** than the elastic peak.

Basics of QED radiative corrections

(internal bremsstrahlung: Mo, Tsai, Maximon)

(First) Born approximation

Initial-state radiation

changes cross section

Final-state radiation

- Cross section for photon emission ~ $d\omega/\omega$
- => integral diverges logarithmically: IR catastrophe

 $(1 + \delta) \Rightarrow e^{\delta}$

Vertex correction => cancels divergent terms; Schwinger (1949) $\sigma_{exp} = (1+\delta)\sigma_{Born}, \ \delta = \frac{-2a}{\pi} \left[(\ln \frac{E}{\Delta E} - \frac{13}{12})(\ln \frac{Q^2}{m_e^2} - 1) + \frac{17}{16} + \frac{1}{2}f(\theta) \right]$

Multiple soft-photon emission: solved by exponentiation, Yennie-Frautschi-Suura (YFS), 1961

Radiative corrections

Radiative Corrections:

- Electron vertex correction (a)
- Vacuum polarization (b)
- Electron bremsstrahlung (c,d)
- Two-photon exchange (e,f)
- Proton vertex and VCS (g,h)
- Corrections (e-h) depend on the nucleon structure

How are corrections done?

Radiative corrections

Inelastic Electron-Proton Scattering

Some kinematics

4-momentum transfer: q² = (energy change)² - (momentum change)²

 $e_{\mu} = (e, \vec{e}) \qquad e'_{\mu} = (e', \vec{e}')$

$$q^{2} = (e - e')^{2} - (\vec{e} - \vec{e}')^{2}$$

$$= e^{2} + e'^{2} - 2ee' - (e^{2} + e'^{2} - 2ee' \cos(\theta))$$

$$= -2ee'(1 - \cos(\theta))$$

$$= -2ee'(2\sin^{2}\frac{\theta}{2}) \qquad (e - e' + P)^{2} = X^{2}$$

$$q^{2} + P^{2} + 2Pq = X^{2}$$

$$q^{2} + P^{2} + 2Pq = X^{2}$$

$$-Q^{2} + M^{2} + 2M\nu = X^{2}$$

For elastic scattering $X^2 = M^2$ and $Q^2 = 2MU$

Usually X is called W and referred to as the mass of the final hadronic state.

Some kinematics

$$W^{2} = q^{2} + M_{T}^{2} + 2\nu M_{T}$$
$$W^{2} = -2ee'(1 - \cos\theta) + 2(e - e')M_{T} + M_{T}^{2}$$
$$W^{2} - M_{T}^{2} - 2eM_{T} = -e'(2e(1 - \cos\theta) + 2M_{T})$$
$$e' = \frac{M_{T}^{2} - W^{2} + 2eM_{T}^{2}}{2e(1 - \cos\theta) - 2M_{T}}$$

Elastic scattering, W = M,

$$e' = \frac{e}{1 + \frac{2e}{M}\sin^2\theta/2}$$

What if $X = W = (M_T + m_{\pi})$,

$$e' = \frac{M_T^2 - (M_T + m_\pi)^2 + 2eM_T^2}{2e(1 - \cos\theta) - 2M_T}$$

I. Elastic Electron Scattering from Nuclei

Fermi's Golden Rule $\frac{d\sigma}{dO} = \frac{2\pi}{\hbar} |M_{fi}|^2 D_f$ M_{fi}: scattering amplitude D_f : density of the final states (or phase factor) $M_{fi} = \left| \Psi_f^* V(x) \Psi_i d^3 x \right|$ $= e^{-k_f \cdot x} V(x) e^{-k_i \cdot x} d^3 x$ $= \int e^{iq \cdot x} V(x) d^3 x$

Plane wave approximation for incoming and outgoing electrons Born approximation (interact only once)

I. Elastic Electron Scattering from Nuclei

Form Factor and Charge Distribution Using Coulomb potential from a charge distribution, $\rho(x)$, $V(x) = -\frac{Ze^2}{4\pi\epsilon_0} \int \frac{\rho(x')}{|x-x'|} d^3 x'$ $M_{fi} = -\frac{Ze^2}{4\pi\epsilon_0} \left[e^{iq\cdot x} \left[\frac{\rho(x')}{|x-x'|} d^3 x' d^3 x \right] \right]$ $= -\frac{Ze^2}{4\pi\epsilon_0} \left[e^{iqR} \left[\left[\frac{e^{iq\cdot x'} \rho(x')}{|R|} d^3 x' \right] d^3 R \right] \right]$ $= -\frac{Ze^2}{4\pi\epsilon} \left[\frac{e^{iqR}}{R} d^3 R \left[e^{iq \cdot x'} \rho(x') d^3 x' \right] \right]$ $F(q) = e^{iq \cdot x'} \rho(x') d^3 x'$

I. Elastic Electron Scattering from Nuclei

Form factor and cross section

For point-like particle, ρ(x') = δ(x') and F(q) = 1 → Rutherford-like scattering

 \cos^2 term only difference From Rutherford formula Arises from Dirac theory For spin $\frac{1}{2}$ particle

Scattering from a charge distribution

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathsf{Mott}} |F(\mathbf{q})|^2$$

I. Elastic (e,e') Scattering \Rightarrow charge distributions

In '70s large data set was acquired on elastic electron scattering (mainly at Saclay) over large Q²-range and for variety of nuclei

"Model-independent" analysis of these data provided accurate results on charge distribution for comparison with the best available theory: Mean-Field Density-Dependent Hartree-Fock

Nuclear Response Function

