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Discovery of the Neutron

Neutrons account for ≈ 1
2

mass of ordinary matter

No net electric charge

Proton - Neutron mass difference: Mn − Mp = 1.293 MeV

Free neutrons are unstable: τ = 888.6s n → p + e + ν̄e



Protons and Neutrons have Structure!

Early Indications

✴ Anomalous magnetic moments of p and n

O. Stern, Nature 132 (1933) 169

µ Dirac µ observed

Proton 1 n.m. +2.79 n.m.

Neutron 0 -1.91 n.m.

✴ Non-zero neutron charge radius from scattering of thermal neutrons

on atoms

〈
r2
ne

〉
=

3mea0

mn

bne = −0.113 ± 0.003 ± 0.004 fm2.

✴ Experiments on Nucleon Structure go back to the mid 1950’s at

Stanford, see Nuclear and Nucleon Structure, R. Hofstader,

W.A. Benjamin (1963).



Quarks, Gluons and QCD

proton = uud + gluons + qq̄

neutron = udd + gluons + qq̄

Quantum Chromodynamics

✴ 6 flavors of quarks, come in 3
colors, interact through the
exchange of colored gluons

✴ Confinement (no free quarks or
gluons)

✴ No analytic solution
✴ Asymptotic Freedom at high

energies (pQCD)
✴ Responsible for residual interaction

between protons and neutrons in
nucleus



Probing the Ground State Substructure

✴ Elastic electron scattering is ideal

✴ Well understood (QED) electromagnetic interaction dominates

✴ Interaction is "weak" : α = 1/137

– Perturbation theory works

✴ But No Free Neutron Targets !!

– Quasi elastic or elastic scattering from a nucleus

– Deuterium (or 3He) preferred

∗ Amenable to "exact" calculations of nuclear structure



Elastic Electron Scattering - The Basics

Eγ ~ .0 -1eV5

λ µγ ~ . .0 m4 07−• Visible light: • X-ray: λγ ~ .0 03 3− nm

Eγ ~ 1-100 KeV

Multi-Gev electrons allow ∆r ≈ 10−13m



Elastic Scattering Experiments

➙ Rutherford discovered atomic nucleus through scattering alpha

particles (He++)

dσ

dΩ
=

α2

4E sin4(θ/2)

➙ Mott worked on consequences of the scattering electrons (spin 1
2 )

dσ

dΩ
=

α2 cos2(θ/2)

4E sin4(θ/2)

➙ Dirac (point-like) nucleon with finite mass and recoil

dσ

dΩ
=

α2 cos2(θ/2)

4E sin4(θ/2)

E′

E

[

1 +
Q2

2M2
tan2(θ/2)

]

E′ =
E

1 + 2E
M

sin2(θ/2)

4-momentum transfer, Q2 = 4EE′ sin2(θ/2)



Form Factors

➙ First introduced to describe the scattering on

an extended charge distribution, ρ(r), such that
R

ρ(r)d3r = 1

We define the form factor as the Fourier transform of the spatial distribution

function,
F (q) =

Z

eiqrρ(r)d3r

Charge distribution Form Factor

point ρ(r) = δ(r − ro) F (q2) = 1 unity

exponential ρ(r) = a3

8π
e−ar F (q2) =

h

1
1+q2/a2

i2

dipole

Yukawa ρ(r) = a2

4πr
e−ar F (q2) = 1

1+q2/a2 pole

Gaussian ρ(r) =
“

a2

2π

”3/2

e−(a2r2/2) F (q2) = e−(q2/2a2) Gaussian

Form factor modifies the cross section formula in a simple way:

dσ

dΩ
⇒

dσ

dΩ
| F (q2) |2



Form factors and Rosenbluth Formula

Proper accounting for the anomalous magnetic moments and form factors we get

the Rosenbluth formula. F1 and F2 are the Dirac and Pauli form factors and have

the normalization: F p
1 = 1 F n

1 = 0 F p
2 = 1.79 F n

2 = −1.91

dσ

dΩ
= σMott

E′

E0

˘

(F1)
2 + τ

ˆ

2 (F1 + F2)
2 tan2 (θe) + (F2)

2˜¯

; F1,2 = F1,2(Q
2)

(a) Mott curve for spinless point-like proton
(b) Rosenbluth curve for a point-like proton with the

Dirac magnetic moment (without anomalous

magnetic moment) (F1(q2) = 1, F2(q2) = 0)
(c) Rosenbluth curve with contribution from

anomalous magnetic moment for point-like

proton (F1(q2) = 1, F2(q2) = κ = 1.79)
✓ The deviation of experimental data from curve (c)

was interpreted as an effect from proton form

factors - finite size proton. Later data was fitted

with a dipole form for the form factors which

implied an exponential charge distribution and

an rms radius of
˙
r2
E

¸1/2

(proton)
=

˙
r2
M

¸1/2

(proton)
= 0.86 fm.



Formalism

Sachs Form Factors: GE

`

Q2
´

= F1(Q
2) − τF2

`

Q2
´

GM

`

Q2
´

= F1

`

Q2
´

+ F2

`

Q2
´

dσ

dΩ
=

σMott

(1 + τ)

E′

E0

"

G2
E + τ(1 + (1 + τ)2 tan2(θ/2))G2

M
| {z }

#

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �

electron nucleon

E,

−→

k

E ′
,

−→

k
′

ER,

−→

PR

M

GE,M

γ

Q2 = 4EE′ sin2(θ/2) τ = Q2

4M2

✴ GE,M contain all the structure

information

✴ Separate GE and GM by angu-

lar dependence via a Rosenbluth

separation (see underbrace)

✴ For a point like probe GE and GM are the FT of the charge and magnetizations

distributions in the nucleon, with the following normalizations

Q2 = 0 limit: Gp
E = 1 Gn

E = 0 Gp
M = 2.79 Gn

M = −1.91



Gn
E Interpretation

In the NR limit (Breit Frame), GE is FT of the charge distribution ρ(r):

Gn
E

`
q

2
´

=
1

(2π)3

Z

d3rρ(r)e(iq·r) =

Z

d3
rρ (r) −

q
2

6

Z

d3
rρ (r) r2 + ... = 0−

q
2

6

˙
r2
ne

¸
+...'

&

$

%

Experimental: Mean square charge radius
˙
r2
ne

¸
is negative.

Theory has intuitive explanation:
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pion-nucleon theory: n = p + π− cloud

valence quark model: n = ddu & spin-spin force ⇒ d → periphery



Why measure Gn
E ?

✴ FF are fundamental quantities

✴ Test of QCD description of the nucleon

Symmetric quark model, with all valence quarks with same wf: Gn
E ≡ 0

Gn
E 6= 0 → details of the wavefunctions

0
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G
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CI (valence)
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Dong, Liu, Williams, PRD 58 074504

✴ More sensitive than other for

factors to sea quark contri-

butions

✴ Soliton model: ρ(r) at large r

due to sea quarks

Necessary for study of nuclear structure.

✴ Few body structure functions

✴ Explains
〈
r
2

ch

〉
of 48Ca as compared to 40Ca



Proton Form Factor Data (pre-1998)

Rosenbluth formula, Rosenbluth separation:

dσ

dΩ
= σNS

"

G2
E + τG2

M

1 + τ
+ 2τG2

M tan2(θ/2)

#

τ =
Q2

4M2

⇒ σR ≡
dσ

dΩ

ε(1 + τ)

σNS
= τG2

M (Q2)
| {z }

intercept

+ε G2
E(Q2)

| {z }

slope

ε−1 = 1 + 2(1 + τ) tan(θ/2)2

Gp
E(Q2) ≈

Gp
M (Q2)

µp
≈

Gn
M (Q2)

µn
| {z }

Scaling Law

≈ GD ≡

„

1 +
Q2

0.71

«−2

| {z }

Dipole Law
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Gn
E Measurements

✴ No free neutron target −→ Use deuteron
✴ proton dominates neutron −→ detect neutron
✴ Gn

M dominates Gn
E −→ use Gn

M to advantage

✴ Inclusive cross section measurements on deuteron:

– Elastic e − D scattering at small angles:

→ dependence on nucleon nucleon potential

→ subtraction of dominant proton contribution

– Quasielastic e − D scattering

→ Rosenbluth separation

→ Sensitive to deuteron structure

✴ Double Polarization measurements

asymmetry measurement

detection of neutron in coincidence

→ less sensitive to deuteron structure

→ avoid Rosenbluth separation

→ avoid subtraction of proton contribution

– D(−→e , e′−→n )p,
−→
D(−→e , e′n)p,

−−→
3He(−→e , e′n)pp



Gn
M unpolarized and polarized

Xu (02+00)
Kubon (02)
Anklin (98+94)
Bruins (95)
Lung (93)
Markowitz (93)

Q2(GeV/c)2

G
Mn
/

µ n
G
D
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10
-1

1

Kubon ratio

Anklin ratio

Bruins ratio

Lung D(e, e′)X

Markowitz D(e, e′n)p

Xu
−−→
3He(~e, e′)X

ratio ≡
D(e, e′n)p

D(e, e′p)n



Gn
E via e − D elastic scattering

No free neutron – extract from e − D elastic scattering:

small θe approximation

dσ

dΩ
= · · · (Gp

E + Gn
E)2

Z

ˆ

u(r)2 + w(r)2
˜

j0(
qr

2
)dr · · ·

Galster Parametrization: Gn
E = − τµn

1+5.6τ
GD



Gn
E at large Q2 through 2H(e, e′)X

PWIA model σ is incoherent sum of p

and n cross section folded with deuteron

structure.

σ = (σp + σn) I (u, w)

= εRL + RT

✴ Extraction of Gn
E :

Rosenbluth Separation ⇒ RL

Subtraction of proton contribution

✴ Problems:

Unfavorable error propagation

Sensitivity to deuteron structure

SLAC: A. Lung et al, PRL. 70, 718 (1993)

→No indication of non-zero Gn
E
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If Gn
E is small at large Q2 then F n

1
must cancel τF n

2
,

begging the question, how does F n
1

evolve from 0 at

Q2 = 0 to cancel τF n
2

at large Q2?



Theory

✴ Ground state QCD structure is a strong coupling problem:

currently unsolvable

– Lattice calculations of form factors just beginning

✴ Models: try to capture aspects of QCD solution

– Bag and Quark models

– Vector Meson Dominance (VMD)

✴ pQCD predicts large Q2 behavior- Q4 scaling



Models of Nucleon Form Factors

VMD F (Q2) =
P

i

CγVi

Q2+M2

Vi

FViN (Q2)

breaks down at large Q2

CBM Lu, Thomas, Williams (1998)

pQCD F2 ∝ F1

“

M
Q2

”

helicity conservation

Counting rules: F1 ∝
α2

s(Q2)

Q4

Q2F2/F1 → constant

JLAB proton data: QF2/F1 → constant

Hybrid VMD-pQCD GK, Lomon

Lattice Dong .. (1998)

RCQM point form (Wagenbrunn..)

light front (Cardarelli ..)

Soliton Holzwarth

LFCBM Miller

Helicity non-conservation pQCD (Ralston..) LF (Miller..)



Theoretical Models



How to measure small quantities like Gn
E

Use spin observables since they often result from interference between

amplitudes

Very Schematically

some operator O = OBig + OSmall

unpolarized crossection: dσ ∝ | 〈f | OBig | i〉 |2 + | 〈f | OSmall | i〉 |2

while spin observables contain terms like: 〈f | OBig | i〉? 〈f | OSmall | i〉

which is linear in small quantity but with a large coefficient.

For the form factors : O ∝ GEGM instead of O ∝ G2
E + G2

M

Two techniques

✴ Recoil Polarization

✴ Beam-Target Asymmetry



CEBAF and Hall C



Gn
E from spin observables

No free neutron targets – scattering from 2H or 3He– can not avoid

engaging the details of the nuclear physics.

Minimize sensitivity to the how the reaction is treated and maximize the

sensitivity to the neutron form factors by working in quasifree

kinematics. Detect neutron.

✴ Indirect measurements: The experimental asymmetries (ξs′ , Aed
V ,

Aqe
exp) are compared to theoretical calculations.

✴ Theoretical calculations are generated for scaled values of the form

factor.

✴ Form factor is extracted by comparison of the experimental

asymmetry to acceptance averaged theory. Monte Carlo

✴ Polarized targets

The deuteron and 3He only approximate a polarized neutron

Scattering from other unpolarized materials, f dilution factor



Recoil Polarization

n t

l

θe

θ

φ

e

n(p)

e'

Electron scattering plane

Secondary


scattering


plane

I0Pt= − 2
p

τ(1 + τ)GEGM tan(θe/2)

I0Pl=
1

MN
(Ee + Ee′ )

p
τ(1 + τ)G2

M tan2(θe/2)

GE

GM
= −Pt

Pl

(Ee+Ee′)
2MN

tan(θe

2 )
Direct measurement of form factor ratio by

measuring the ratio of the transfered

polarization Pt and Pl



Recoil polarization

p

P
P

P

L = r    p

r

t

l

Elastic scattering of polarised

nucleons on unpolarised protons

has analysing power ε(θn) due to

spin-orbit term VLS in NN

interaction.

Left-right asymmetry is observed if

the proton is polarized vertically.



Recoil Polarization – Principle and Practice

✴ Interested in transfered polarization, Pl and Pt, at the target

✴ Polarimeters are sensitive to the perpendicular components only,

P
pol
n and P

pol
t

Measuring the ratio Pt/Pl requires the precession of Pl by angle χ

before the polarimeter.

✴ If polarization precesses χ (e.g. in a dipole with ~B normal to

scattering plane):

P
pol
t = sinχ · Pl + cosχ · Pt

For χ = 90o, P
pol
t = Pl and is related to G2

M

For χ = 0o, P
pol
t = Pt and is related to GEGM

✴ Gn
E/Gn

M via 2H(~e, e′~n)p in JLAB’s Hall C - Charybdis and N-Pol



Gn
E in Hall C, E93-038

Recoil polarization, 2H(~e, e′~n)p

✴ In quasifree kinematics, Ps′ is sensitive to Gn
E and insensitive to

nuclear physics

✴ Up–down asymmetry ξ ⇒ transverse (sideways) polarization

Ps′ = ξs′/PeApol. Requires knowledge of Pe and Apol

✴ Rotate the polarization vector in the scattering plane (with

Charybdis) and measure the longitudinal polarization,

Pl′ = ξl′/PeApol

✴ Take ratio, Ps′

Pl′
. Pe and Apol cancel

✴ Three momentum transfers, Q2 = 0.45, 1.13, and 1.45(GeV/c)2.

✴ Data taking 2000/2001.



Gn
E in Hall C via 2H(~e, e′~n)p

Ee = 0.884 GeV; Ee′ = 0.643 GeV; Θe′ = 52.65°;
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Gn
E in Hall C via 2H(~e, e′~n)p

To HMS

Charybdis

Front Veto/Tagger

Bottom Rear Array

Rear Veto/Tagger

Front Array

Lead Curtain
Target LD2, LH2

Top Rear Array

e

e

(Momentum Direction)Z

XP
+
X

= P
,

L

P
L

, Polarization
 Vector

P
X

−
= −PL

,

SP
,

+ 90 deg.
− 90 deg.

δ

Taking the ratio eliminates the dependence on the analyzing power and

the beam polarization → greatly reduced systematics

Gn
E

Gn
M

= K tan δ where tan δ =
Ps′

Pl′
=

ξs′

ξl′
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Left: Coincidence TOF for neutrons. Difference between measured TOF and

calculated TOF assuming quasi-elastic neutron. Right: ∆TOF for neutron in

front array and neutron in rear array.

∆TOF is kept as the four combinations of (-,+) helicity, and (Upper,Lower)

detector and cross ratios formed. False asymmetries cancel.
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„
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U N−

D
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D

«1/2

ξ = (r − 1)/(r + 1)



Gn
E in Hall C via 2H(~e, e′~n)p

Q
2
 = 1.14 (GeV/c)

2
 (n,n) In Front  ∆p/p = -3/+5%
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Results through 2H(~e, e′~n)p



Beam–Target Asymmetry - Principle

Polarized Cross Section:

σ = Σ + h∆

Beam Helicity h ± 1

A =
σ+ − σ−

σ+ + σ−

=
∆

Σ

θ
e

e

e'

(q, ω)
h = ±1

u
y

normal

u
x

u
z

polarization

axis (θ
∗
, φ

∗
)

φ
∗

θ
∗

along qxz plane

A =

AT
︷ ︸︸ ︷

a cosΘ?(GM )2 +

AT L
︷ ︸︸ ︷

b sinΘ? cosΦ?GEGM

c (GM )
2

+ d (GE)
2 ; ε =

N↑ − N↓

N↑ + N↓
= PB · PT ·A

Θ? = 90◦ Φ? = 0◦

=⇒ A =
bGEGM

c (GM )2 + d (GE)2

Θ? = 0◦ Φ? = 0◦

=⇒ A =
aG2

M

c (GM )
2

+ d (GE)
2



Experimental Asymmetry

Quasi-Elastic Scattering off Polarized Deuteron

ε = Pe

(1 − β)Ae + (1 + αβ)P V
t AV

ed + (1 − βγ)P T
t AT

ed

(1 + β) + (1 − αβ)P V
t AV

d + (1 + βγ)P T
t AT

d�� ��P V
t , P T

t = vector, tensor polarization α, β, γ = normalization ratios

✴ Deuteron supports a tensor polarization, P T
t , in addition to the usual

vector polarization, P V
t

- This can lead to both helicity dependent and helicity independent

contributions

After (symmetric) acceptance averaging and ignoring small P T
t

ε = 1+αβ
1+β

Pe P V
t AV

ed

or

AV
ed = 1+β

(1+αβ) Pe P V
t

ε

Gn
E extracted via AV

ed from data and MC simulation



Beam–Target Asymmetry in E93-026

2−→H(−→e , e′n)p�� ��σ(h, P ) ≈ σ0

(
1 + hPAV

ed

)

h: Beam Helicity

P : Vector Target Polarization

T : Tensor Target Polarization T = 2 −
√

4 − 3P 2

AT
d is suppressed by T ≈ 3%

Theoretical Calculations of electrodisintegration of the deuteron by H.

Arenhövel and co-workers



E93-026
−→
D(−→e , e′n)p

�� ��σ(h, P ) = σ0

(
1 + hPAV

ed

)

AV
ed is sensitive to Gn

E

has low sensitivity to potential models

has low sensitivity to subnuclear degrees of freedom (MEC, IC)

in quasielastic kinematics

Sensitivity to Gn
E – Insensitivity to Reaction
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Solid Polarized Targets
✴ frozen(doped) 15ND3

✴ 4He evaporation refrigerator
✴ 5T polarizing field
✴ remotely movable insert
✴ dynamic nuclear polarization

Gen Target Performance, 10Sep01
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Target Stick



Neutron Detector

✴ Highly segmented scintillator
✴ Rates: 50 - 200 kHz per detector
✴ Pb shielding in front to reduce

background
✴ 2 thin planes for particle ID (VETO)
✴ 6 thick conversion planes
✴ 142 elements total, >280 channels

✴ Extended front section for
symmetric proton coverage

✴ PMTs on both ends of scintillator
✴ Spatial resolution ' 10 cm
✴ Time resolution ' 400 ps
✴ Provides 3 space coordinates, time

and energy
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Neutron Detector



n Detector — Single Event Display

Sample Neutron Track Sample Proton Track

majority of protons in upper half of detector



Experimental Technique for
−→
D(−→e , e′n)p

For different orientations of h and P : NhP ∝ σ (h, P )

Beam-target Asymmetry:

ε =
N↑↑ − N↓↑ + N↓↓ − N↑↓

N↑↑ + N↓↑ + N↓↓ + N↑↑
= hPfAV
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Data and MC Comparison
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Extracting Gn
E
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E93026 Results



Relevant Theories



Laboratory Collaboration Q2(GeV/c)2 Reaction Reported

MIT-Bates E85-05 0.255 2H(ẽ, e′ñ) 1994

<0.8 2H̃(ẽ, e′n) Planned

<0.8 3H̃e(ẽ, e′n) Planned

Mainz-MAMI A3 0.31 3H̃e(ẽ, e′n) 1994

A3 0.15, 0.34 2H(ẽ, e′ñ) 1999

A3 0.385 3H̃e(ẽ, e′n) 1999

A1 0.67 3H̃e(ẽ, e′n) 1999/2003

A1 0.3, 0.6, 0.8 2H(ẽ, e′ñ) Analysis

NIKHEF 0.21 2H̃(ẽ, e′n) 1999

Jefferson Lab E93026 0.5, 1.0 2H̃(ẽ, e′n) 2001/2004

E93038 0.45, 1.15, 1.47 2H(ẽ, e′ñ) 2003

E02013 1.3, 2.4, 3.4 3H̃e(ẽ, e′n) Approved



Conclusions

✴ Gn
E remains the poorest known of the four nucleon form factors.

✴ Gn
E is a fundamental quantity of continued interest.

✴ Significant progress has been made at several laboratories by

exploiting spin correlations

✴ Data under analysis is of sufficient quality to test QCD inspired

models.

✴ Future progress likely with new experiments and better theory.


