Correlations in Few* Body Systems

EMMI Workshop: Cold dense nuclear matter: from short-range nuclear correlations to neutron stars

Donal Day University of Virginia

* and heavier

Outline

- Introduction
- NN potential responsible
 - Implications
- Correlations exist
 - Some examples
- Two nucleon correlations
 - Inclusive
 - Exclusive Few body systems

- 3N correlations
 - 4He/3He
 - 12C/4He etc
- A_{zz:} Scattering from a Tensor Polarized Deuteron
- Finish

Independent Particle Shell Model

 Independent particle states of a uniform potential – a mean field.

- Long mean free paths
- No two-body interactions
- Absence of correlations in ³ ground-state wave function.

$$V_{WS}(r) = \frac{-V_0}{1 + e^{(r-R)/a}} - V_{ls} \left(\frac{\hbar}{m_{\pi}c}\right)^2 \frac{1}{r} \frac{d}{dr} \left(\frac{1}{1 + e^{(r-R)/a}}\right) \vec{l} \cdot \vec{\sigma} + V_{Coul}$$

- The single-particle energies ξ_α and wave function Φ_α are the basic quantities – can be accessed in knockout reactions
- The spectral function should exhibit a structure at fixed energies with momentum distributions characteristic of the shell (orbit).

$$S(\vec{p}, E) = \sum_{a} |\Phi_{a}(p)|^{2} \delta(E + \xi_{a})$$

Enormous strong force acting
So many nucleons to collide with
How can nucleons possibly complete whole orbits (10²¹/s) without interacting?

Hard core is small part of the nuclear volume

$$\frac{V_c}{V_{total}} = \left(\frac{c}{2r_o}\right)^3 \approx 1/100$$

Case for Correlations

- The nucleon-nucleon (NN) interaction is singularly repulsive at short distances
 - Difficult to find two nucleons close to each other.
 - Loss in configuration space components signals an increase of high-momentum components
- Both the correlation hole and the high-k components are absent in IPMs
- Taken together the loss of configuration space and the strengthening of high of momentum components are "correlations".
- •The NN tensor force also provides high-momentum components; required to obtain the quadrupole moment of the deuteron and predicts a isospin dependence of SRCs.

The Pauli principle requires that two-nucleon states be antisymmetric wrt to exchange of the nucleons' space, spin, and isospin coordinates

V (MeV)

D-state nucleon flips spin

.=0

=2

Interaction

metric triplet T = 1 $_1 = |p_1\rangle |p_2\rangle$ proton-proton state $_{-1} = |n_1\rangle |n_2\rangle$ neutron-neutron state $_0 = \frac{1}{\sqrt{2}}(|p_1\rangle |n_2\rangle + |p_2\rangle |n_1\rangle)$ neutron-proton state

symmetric singlet T = O $_0 = \frac{1}{\sqrt{2}}(|p_1\rangle |n_2\rangle - |p_2\rangle |n_1\rangle)$ neutron-proton state

AV₁₈

5

How can two nucleons combine?

- The SR NN attraction dominated tensor interaction, which yields high momentum iso-singlet (np) pairs.
- Absent in the iso-triplet channel (pp, nn, np).
- The two-body distribution should be identical to the deuteron distribution, n₂(k) = n_D(k), and the ratio of scattering cross sections between a heavy nucleus A and the deuteron to yield a₂ (A, Z)
- Without the tensor contribution the deuteron would not be bound

L	S	J	$\pi = -1^L$	T(L+S+T odd)	²⁵⁺¹ Lj		
0	0	0	+	1	¹ S ₀		
0	1	7	+	0	³ S ₁		
1	0	1	1	0	$^{1}P_{1}$		
1	1	0	1	1	³ P ₀		
1	1	1	1	1	³ P ₁		
1	1	2	1	1	³ P ₂		
2	0	2	+	1	$^{1}D_{2}$		
2	1	1	+	0	³ D ₁		
2	1	2	+	0	³ D ₂		
2	1	3	+	0	$^{3}D_{3}$		
			- 1				

Two-nucleon states

 AV_{18} – static part

The tensor interaction causes a quadrupole type dependence as a function of the angle between the total spin direction (which we aligned along the z axis) and the direction of the distance vector \mathbf{r} . The main attraction is obtained when the spins of the nucleons are aligned with the distance vector \mathbf{r} while almost no attraction exists in the x direction where the spins are orthogonal to \mathbf{r} .

Configuration and Momentum space

$$\rho^{(1)}(\mathbf{r}_{1}) = \frac{1}{2J+1} \sum_{M} \langle \Psi; JM | \sum_{i=1}^{A} \delta^{3}(\mathbf{\hat{r}}_{i} - \mathbf{r}_{1}) | \Psi; JM \rangle$$
$$n^{(1)}(\mathbf{k}_{1}) = \frac{1}{2J+1} \sum_{M} \langle \Psi; JM | \sum_{i=1}^{A} \delta^{3}(\mathbf{\hat{k}}_{i} - \mathbf{k}_{1}) | \Psi; JM \rangle$$

Two-body densities in coordinate space for a pair of nucleons with S = 1, $M_S = 1$, and T = 0 in the ground states of ²H, ³H, and ⁴He and the 20.21 MeV excited state of ⁴He

Where the potential is attractive, $r \approx (0,0,\pm 1 \text{ fm})$, the densities are >> and in regions where the interaction is repulsive or close to zero the probability of finding the particle pair is small.

These correlations can not be represented in a shell model and the two-body densities have their maximum at relative distance r = 0.

Universality of short-range nucleon-nucleon correlations, Feldmeier, Horiuchi, Neff, Suzuki Physical Review C 84, 054003 (2011)

Momentum Distributions

n(k) is dominated by SRCs at large k and n(k) exhibits the same shape for all nuclei for k>k_{fermi}

Evidence of SRC

Correlations and charge distributions

Charge density archive

Central density is saturated – nucleons can be packed only so close together: p_{ch} * (A/Z) = constant

IPM (full lines), LRC (long dashed lines), SRC (short dashed lines).

Correlations and charge distributions of medium heavy nuclei, Marta Anguiano and Giampaolo Co'

Evidence of SRC

Density difference between ²⁰⁶Pb and ²⁰⁵Tl.: differ by a single 3s^{1/2} proton

Experiment - Cavedon et al (1982) Theory: Hartree-Fock orbitals with adjusted occupation numbers describe the shape of the 3s^{1/2} orbit.

Occupation numbers scaled down by a factor ~0.65.

Correlations: Where to look in inclusive A(e,e')

Appearance of plateaus is A dependent. Kinematics: heavier recoil systems do not require as much energy to balance momentum of struck nucleon – hence p_{min} for a given x and Q² is smaller. Dynamics: mean field part in heavy nuclei persist in x to larger values

x > 1, low & side of qep Inelastic electron scattering from fluctuations in the nuclear charge distribution Wieslaw Czyż and Kurt Gottfried Annals of Physics 21, 47 (1963)

Have to go to higher x or Q^2 to insure scattering is not from mean-field nucleon

Ratios, SRC's and Q² scaling

 $2/A \sigma^{Fe}(x,Q^2)/\sigma^{D}(x,Q^2)$

 $a_j(A)$ is probability of finding a jnucleon correlation 13

Ratios and SRC

Dominance of np pairs in SRC region leads us to drop the isoscalar correction. We correct for COM motion of pair.

Hall C

 R_{2n} : number of np pairs relative to the deuteron

A	R_{2N} (E02-019)	SLAC	CLAS	F _{CM}	Ciofi/
³ He	1.93 ± 0.10	1.8 ± 0.3		1.10 ± 0.05	1
⁴ He	3.02 ± 0.17	2.8 ± 0.4	2.80 ± 0.28	1.19 ± 0.06	3
Be	3.37 ± 0.17	• • •	• • •	1.16 ± 0.05	
С	4.00 ± 0.24	4.2 ± 0.5	3.50 ± 0.35	1.19 ± 0.06	4
Cu(Fe)	4.33 ± 0.28	(4.3 ± 0.8)	(3.90 ± 0.37)	1.20 ± 0.06	* 4
Au	4.26 ± 0.29	4.0 ± 0.6	• • •	1.21 ± 0.06	4
$\langle Q^2 \rangle$	$\sim 2.7 \text{ GeV}^2$	$\sim 1.2 \text{ GeV}^2$	$\sim 2 \text{ GeV}^2$		
x_{\min}	1.5	•••	1.5		
$lpha_{ m min}$	1.275	1.25	1.22-1.26		

Evidence of 2N-SRC at x>1.5

Theory and experiment display isospin dependence

Data show large asymmetry between np, pp pairs: Qualitative agreement with calculations; effect of tensor force. Huge violation of <mark>often assumed</mark> isospin symmetry

High momentum(!!) strength in proton knockout in (e,e'p)

²H(ee'p)n Mainz

Boeglin et al, Phys. Rev. C 78, 054001 (2008) Blomqvist et al, Phys Lett B, (1998), 33-38

$$E = .855$$

 $\theta = 45$
 $E' = .657$
 $Q^2 = 0.33$
 $x = .88$

High momentum strength in A(e,e'p) ³He(e,e'p)d E89-044, Hall A

High momentum strength in A(e,e'p) ³He(e,e'p)pn E89-044, Hall A

³He(e,e'p)np F. Benmokhtar et al. , PRL 94, 082305 (2005)

Arrows indicate expected location of correlated pair

•dotted line PWIA

•dash-dot: Laget (PWIA)

•FSI (long dashed line) to full calculation (solid line), including meson-exchange current and final-state interactions: Laget

•In the 620 MeV/c panel

short dashed curve is a calculation with

PWIA + FSI only within the correlated pair.

Tensor Correlations Measured in ³He(e,e',pp)n

H. Baghdasaryan, L. B. Weinstein, et al. PRL 105, 222501 (2010)

Events with one leading nucleon and a spectator correlated NN pair

- The spectator nucleons each have less than 20% of the transferred energy
- Leading nucleon's momentum perpendicular to→q be less than 0.3 GeV/c.
- The ratio of pp to pn pair cross sections for 0.3 < p_{rel} < 0.5 GeV/c is very small at low p_{tot} and rises to approximately 0.5 at large p_{tot}. The pp pairs at low p_{tot} are in an s-state, this ratio shows the dominance of tensor over central correlations.

E97-006 Correlated Spectral Function and ¹²C(e,e'p) Reaction Mechanism

D. Rohe, et al. Phys. Rev Lett. 93 182501

Integrated strength in the covered $E_m - p_m$ region:

$$Z_{c} = 4\pi \int_{130}^{670} dp \, p_{m}^{2} \int dE_{m} S(E_{m}, p_{m})$$

"correlated strength" in the chosen $E_m - p_m$ region:

Rohe et al.,

Phys. Rev. Lett. 93, 182501 (2004)

In terms of # of protons in ${}^{12}C$

¹² C	exp.	CBF theory	G.F. 2.order	self-consistent G.F.				
experimental area	0.61	0.64 ≈ 10 %	0.46	0.61				
in total (correlated part)		22 %	12%	≈20%				
contribution from FSI: -4 %								

- \approx 10% of the protons in ¹²C at high p_m, E_m found
- first time directly measured

comparing to theory leads to conclusion that ≈ 20% of the protons in Carbon are beyond the IPSM region

3N Correlations

2N SRC (3N SRC)

- p > k_F i.e. its momentum exceeds characteristic nuclear Fermi momentum, ($k_F \gtrsim 250$ MeV/c)
- balanced by the momentum of a (two) correlated nucleon(s)
- In both cases the center of mass momentum of the SRC, $p_{cm} \lesssim k_F$

Where to look: >/= 600 MeV/c, $Q^2 > 4$, x = 2 - 3 Misak's talk

A(e,e') cross section ratios and SRC

Hall B

Hall C

Data from SLAC Rock et al, PRC 26, 1593 (1982)

A(e,e') cross section ratios and SRC

More data at larger Q² needed, x> 1 at 12 GeV, E12-06-105, , see Arrington, Fomin talks.

A(e,e') cross section ratios and SRC

Acceptance effects, windows

E12-15-005: Measurements of Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

Probe short-range repulsion and tensor force in nucleon- nucleon interaction through tensor asymmetries from quasi-elastic and elastic deuteron scattering

Tensor asymmetries are predicted to be sensitive to the D state probability as well as relativistic effects.

Conditionally Approved (44 days) on improving the tensor polarization and its measurement

E.Long (UNH)) DD, D. Keller, K. Slifer, P. Solvignon, D. Higinbotham

 A_{zz} can be used to discriminate between hard and soft wave functions. In impulse approximation A_{zz} is directly related to the S- and D-states which have very different r and p behavior.

Modern calculations indicate a large separation of hard and soft WFs begins above the quasi elastic peak at x > 1.4

Deuteron Wave function

Is the deuteron wave function hard or soft?

- Hard like AV18 or softer like CD Bonn
- Unpolarized deuterons need to be probed at k > 500 MeV/c to distinguish between hard and soft WFs
 - Difficult, absolute cross sections
- At present no unambiguous evidence for hard/soft.
- Tensor polarization exposes the Dstate, allowing hard and soft WFs to be distinguished at lower momenta

$$D(e, e'p) \theta_{nq} = 35^{\circ}$$

$$\theta_{nq} = 45^{\circ}$$

generated on 2015-10-02 by Donal Day

k⁴ * n(k)

 (k/k_f)

Measurement of Quasi Elastic Azz

Sensitive to effects that are very difficult to measure with unpolarized deuterons

Huge 10–120% asymmetry

Measuring Azz over a range in x and Q^2 provides insight to

- Nature of NN Forces
- Hard/Soft wf
- Relativistic NN DynamicsOn-Shell/Off-Shell Effect FSI

Decades of theoretical interest that we can only now probe with a highluminosity tensor-polarized target

Vector and Tensor Polarization of the Deuteron

Deuteron in a magnetic field H, spin projection on Z can only take values $m_d = +1$, 0, -1.

If N₊, N₀, and N₋ are the relative numbers in the substates $m_d = +1$, 0, -1, (N₊ + N₀ + N₋ = 1), then vector p_z and tensor p_{zz} polarizations of a deuteron target are:

Vector: $p_Z = N_+ - N_-$

Tensor (Alignment) $p_{ZZ} = N_{+} + N_{-} - 2N_{0} = 1 - 3N_{0}$.

Dynamic Nuclear Polarization

 $P_{zz} = 2 - \sqrt{4 - 3P_z^2}$

50% Vector $P_z \implies 20\%$ Tensor

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$ + - 2

5 Tesla at 1K

3cm target length

Positive Pzz: fill up the first two and minimize the mo-state

Tensor Polarization Progress

At UVa progress measuring P_{zz} through NMR line-shape analysis advancing (Dustin Keller)

Solid state NMR P_{zz} can be confirmed with elastic (T_{20})

Enhancement through RF hole burning

D Keller, PoS(PSTP 2013) 010 D Keller, HiX Workshop (2014) D Keller, J.Phys.:Conf.Ser. 543, 012015 UVA Tensor Enhancement on Butanol (2 D Keller, PSTP 2015, to be published

 $\begin{array}{l} P=0.503\rightarrow 0.447\\ P_{zz}=0.196\rightarrow 0.325 \end{array}$

A_{zz} for $Q^2 > 1$ GeV² with $P_{zz} = 30\%$

LL Frankfurt, et al, PRC 48 2451 (1993)

Solid = Quasi-elastic Open = Elastic

Summary

- 2N SRC and their isospin dependence (anticipated by our understanding of the NN interaction, is now firmly established in multiple observables, experiments projectiles, final states and nuclei
- Relation of SRC to EMC established only lacking are calculations that exposes the underlying connection
- Refined theory and calculation are needed incorporating SRC, FSI, and offshell behavior will advance understanding
- SRC demand high densities (momenta, virtuality) and, if these rare fluctuations can be captured, they should expose, potentially large, medium modifications
- 3N SRC are as yet unseen in inclusive electron scattering some sleuthing underway
- Approved experiments across labs with different focuses over next 5-7 years will reveal much
- Next big opportunity in inclusive scattering (in my view) is the transition from QES to DIS at x > 1 at very large momenta transfer
- Tensor polarized targets advances will allow exposure of deuteron wf through asymmetry measurements
 - Opportunities exist for experiments with electrons and photons on tensor polarized deuterons