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General Features of the Inclusive Spectrum, A(e,e’)
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General Features of the Inclusive Spectrum

Structures in the spectra 
diminish faster with Q2  than 
in the nucleon because of  
motion - they give way to  
smooth and structureless 
shape 

Q2 = 6.4
Q2 = 4.1

Q2 = 2..5

Q2 = 0.9

Q2 = .45

�e
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A�1, ��k
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Two dominant processes 

Quasielastic
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These dominant processes share the same initial state but 
have very different Q2 dependencies
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DIS

σei ∝ elastic (form factor)2 W1,2 scale with ln Q2 dependence 
in DIS region, resonances fall 
quickly with Q2

n(k) =
Z
dE S(k, E)

The limits on the integrals 
are determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 

Charge-changing neutrino reaction cross sections for the nucleons in 
the nucleus for example CCQES

weak charged current interaction with a nucleonσei → σνi
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Nucleus kF ε
6Li 169 17
12C 221 25
24Mg 235 32
40Ca 251 28
natNi 260 36
89Y 254 39
natSn 260 42
181Ta 265 42
208Pb 265 44

Early 1970’s Quasielastic Data

Li C

Pb

500 MeV, 60 degrees
!q ! 500MeV/c

Fermi gas model Moniz, ...
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Spectral function S(E, k), not n(k) describes 
nuclei: probability of finding a nucleon with initial 
momentum k and  energy E in the nucleus

 S(k,E) for 3He

n(k) =

∫
S(Es, k) dEs

NM

9

(Benhar and Pandharipande, 1993; Ciofi degli Atti et al.,
1990; Morita and Suzuki, 1991).

FIG. 6 Nuclear matter spectral function calculated using
correlated basis function perturbation theory (Benhar et al.,
1989).

As an example, Fig. 6 shows the results of a nu-
clear matter calculation3 carried out using correlated ba-
sis function (CBF) perturbation theory (Benhar et al.,
1989). In addition to the peaks corresponding to sin-
gle particle states, i.e. to bound one-hole states of the
(A–1)-nucleon system, the resulting SN (k, E) exhibits
a broad background, extending up to E ∼ 200 MeV
and |k| ∼ 800 MeV/c, associated with n-hole (n–1)-
particle (A–1)-nucleon states in which at least one nu-
cleon is excited to the continuum. The correlation ridge
at E ∼ k2/2m (see Eq. (28)) is clearly visible. Note that,
in absence of interactions, the surface shown in Fig. 6
collapses to a collection of δ-function peaks distributed
along the line |E| = k2/2m, with |k| < kF ≈ 250 MeV/c.

The proton spectral functions of nuclei with A > 4 have
been modeled using the Local Density Approximation
(LDA) (Benhar et al., 1994), in which the experimental
information obtained from nucleon knock-out measure-

3 As in symmetric nuclear matter Sp(k, E) = Sn(k, E), the spec-
tral function shown in the figure corresponds to an isoscalar nu-
cleon.

ments is combined with the results of theoretical calcula-
tions of the nuclear matter S(k, E) at different densities.

The kinematical region corresponding to low miss-
ing energy and momentum, where shell model dynamics
dominates, has been extensively studied by coincidence
(e, e′p) experiments. The spectral function extracted
from the data is usually written in the factorized form
(compare to Eq. (27))

SMF (k, E) =
∑

nε{F}

Zn |φn(k)|2Fn(E − En) , (30)

where the spectroscopic factor Zn < 1 and the func-
tion Fn(E − En), describing the energy width of the n-
th state, account for the effects of residual interactions
not included in the mean field picture. In the Zn → 1
and Fn(E − En) → δ(E − En) limit Eq. (30) reduces to
Eq. (27).

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values (Benhar
et al., 1994). Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr(k, E) =

∫
d3r ρA(r)SNM

corr (k, E; ρ = ρA(r)) , (31)

where ρA(r) is the nuclear density distribution and
SNM

corr (k, E; ρ) is the correlation part of the spectral func-
tion of uniform nuclear matter at density ρ. The corre-
lation part of the nuclear matter spectral function can
be easily singled out at zero-th order of CBF, being as-
sociated to two hole-one particle intermediate states. At
higher orders, however, one hole and two hole-one parti-
cle states are coupled, and the identification of the cor-
relation contributions becomes more involved. A full ac-
count of the calculation of SNM

corr (k, E) can be found in
(Benhar et al., 1994).

The full LDA spectral function is written in the form

SLDA(k, E) = SMF (k, E) + Scorr(k, E) , (32)

the spectroscopic factors Zn of Eq. (30) being constrained
by the normalization requirement

∫
d3k dE SLDA(k, E) = 1 . (33)

A somewhat different implementation of LDA has also
been proposed (Van Neck et al., 1995). Within this ap-
proach the nuclear matter spectral function is only used
at k > kF (r), kF (r) being the local Fermi momentum,
whereas the correlation background at k < kF (r) is in-
corporated in the generalized mean field contribution.
Comparison between the resulting Oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short
range nuclear dynamics are unaffected by surface and

For finite nuclei, LDA is used, 
with experiment

E ≈ k2/2M

S

Corr

(~k, E) =

Z
d

3
r⇢
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(~r)SNM

corr

(~k, E; ⇢ = ⇢

A

(~r))
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MF
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corr
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 S(k,E) for NM

SMF(~k, E) =
X

n

Zn | �n |2 Fn(E � En)

Friday, October 26, 12



What role FSI?

In (e,e’) the failure of IA calculations to explain dσ at small energy loss

In (e,e’p) flux of outgoing protons strongly suppressed: 
20-40% in C, 50-70% in Au

Some of this could be resolved by a rearrangement of strength in SE 

PWIA (QE)

PWIA (total)

folded

O.Benhar,  with CGA for FSI

Old problem: real/complex optical potential.
Real part generates a shift, imaginary part a folding of cs, reduction of qep.
Can FSI ever be neglected? - scaling suggests they can.

PWIA + folded

PWIA (QE)

PWIA (DIS)

Carbon
3He

Q2=2.5

Q2=2.5
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Issues about CGA FSI

• Extreme sensitivity to hole size
• On-shell cross sections: nucleon is off-shell by in E by
  ℏ/∆t = ℏ W: modification of NN interaction

• total cross section?
• Unitarity?   Folding function is normalized to one.
• Role of momentum dependent folding function (Petraki et al, PRC 
67 014605, 2003) has lead to a quenching of the tails. 

•Comparison to data with this new model for a range of A and  Q2 
be very useful

 “The discrepancy with the measured cross sections increases as q increases, 
while the suppression of FSI’s due to the momentum dependence of the folding 
function appears to be larger at lower momentum transfer.

 A different mechanism, leading to a quenching of FSI’s and exhibiting the opposite 
momentum-transfer dependence still seems to be needed to reconcile theory and 
data.” Petraki et al, PRC 67 014605
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Scaling
• Scaling refers to the dependence of a cross section (a structure 
function), in certain kinematic regions, on a single variable.
• At moderate Q2 inclusive data from nuclei has been well described in 
terms y-scaling, one that arises from the assumption that the electron 
scatters from moving, quasi-free nucleons.

• No FSI
• No internal excitation of (A-1)
• Full strength of spectral function can be integrated over at finite q
• No inelastic processes
• No medium modifications

Assumptions & Potential Scale Breaking Mechanisms

F(y) =
�exp

(Z · �ep + N · �en)
· K n(k) = �

1
2�y

dF(y)
dy

Derived in straightforward way in the PWIA (next two slides)

y is the momentum of the struck nucleon parallel to the q-vector: y ≈ -q/2 + mν/q

Direct access to the momentum distribution
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y-scaling in PWIA

d2σ

dEdΩe′
=

A∑
i=1

∫
d"k

∫
dEs σei Si(Es, k)

× δ(ω − Es + MA − (M2 + "k′ 2)1/2 − (M2
A−1 +"k2)1/2),

M∗

A = [(ω +MA)
2
− q2]1/2

kmin and kmax  are determined from cos θ = ±1, in 
energy conserving δ function:
ω − Es +MA = (M2 + q2 + k2 ± 2kq)1/2 + (M2

A−1 + k2)1/2

Emin = MA−1 +M − MA, Emax = M∗

A −MA

d2σ

dEdΩe′
= 2π

A∑

i=1

∫Emax

Emin

dEs

∫kmax

kmin

dk k σei Si(Es, k) k
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︸ ) ︸
K

Scaling and Correlations

dσQE

dΩdω
=

∫

dEmdp(Zσ̃p + N σ̃n)

×δ(MA − EB + ν − EX)P (p, Em).

EM is the missing energy and determines the invariant
mass of MB such that Em = MB + M − MA and EX =
√

M 2 + (p2 + q2). When B is the A−1 ground state then
the missing energy is minimal Emin ≡ MA−1 + M − MA.

k

k’

X

B

p

A

q

The particular case when Em = Emin defines the y-scaling
variable

y = −
W 2 + M2

A−1 − M2

2W 2

(

|q|− (MA + ν)

[

1 −
4W 2M2

A−1

(W 2 + M2
A−1 − M2)2

]1/2
)

XEMPT Meeting Donal Day

K = q/(M2 + (!k + !q)2)1/2

y = kmin

�ei = f(q,!,~k, Es) = �ei(q,!, y, Emin)
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y-scaling in PWIA
• lower limit becomes y= y(q,ω)
• upper limits grows with q and because momentum distributions are 

steeply peaked, can be replaced with ∞
• Assume S(Es,k) is isospin independent and neglect Es dependence of σei 

and kinematic factor K and pull outside
• At very large q and ω,  we can let Emax= ∞, and integral over Es can be 

done
n(k) =

∫
S(Es, k) dEs

Now we can 
write

where 

d2σ

dEdΩe′
= (Z σ′

ep + N σ′

en)K
′ F(y)

F(y) = 2π

∫∞
|y|
n(k)kdk

Scaling (independent of Q2) of 
QES  provides direct access to 
momentum distribution

Friday, October 26, 12



y-scaling - simplest system
No internal excitation of 
(A-1) system

10-4

10-3
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100

101
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103

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
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Nijmegen
Paris

Argonne V14
�=18°,  <Q2> � 2.7
�=22°,  <Q2> � 3.8
�=26°,  <Q2> � 4.8
�=32°,  <Q2> � 6.4

F(y) =
�exp

(Z · �ep + N · �en)
· K

n(k) = �
1

2�y
dF(y)
dy

First use: compare to 
exact calculations  to 
set limits on FSI and 
extract high 
momentum (> 500 
MeV/c!) piece of gs 
wave function

Second use: turn around: predict σ at 
any E, θ and ν, using parametrization 
of F(y); convert to n(k) and smear 
inelastic ==> convolution model.
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larger FSI in Fe
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Spectral function integration regions grows with q

Is the energy distribution as calculated (scaling occurs at much lower q)? Do 
other processes play a role? FSI or/and DIS - what role

As q increases, more and more of the spectral function S(k,E) is integrated, 
convergence from below.

 @ y = -0.5

q = 0.5

q = ∞

ξM = ∞q = 1.8

q = 1.8

q = 1.3

3He

3He
E = 5.766, 8
E = 5.766, 13
E = 5.766, 18

Nonetheless, inclusive data in the quasi-elastic region display scaling - Q2 
independence: - scaling of the 1st kind. Can be used to accurately estimate 
cross sections. A independence and Q2 independence: superscaling
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Convergence of  F(y,q)
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12Cy = -0.2
y = -0.4

Convergence from above, not below suggests that FSI, known to contribute, 
die out with increasing momentum transfers

12C

Questions:
• How to account for the fact the binding (the distribution of strength in 
S(k,E)) in a y-scaling analysis
• Account for the change in the energy balance when scattering from a 
nucleon in a SRC
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ycw : Like y but accounting for 
excitation energy of residual 
system

F(ycw) =
σexp

(Zσ̃p + Nσ̃n)
· K

Single nucleon knock-out, E ≠ Emin, A-1 system excited

(A-1)*

(A-1)*

y-scaling indicates very high-momenta: model incomplete - 
strength is spread out in E

F(yCW) = 2π

∫∞
|ycw|

pdpn(p)

Faralli, Ciofi degli Atti & West, Trieste 1999

ν + MA =
√
M2 + (p + q)2 +MA−1 +

p2

2M
+ bA − cA | p |

︸ # ︸
CM motion

− < Egr >

d2σ
dΩdν

∝

∫

d#p
∫

dEσei Si(p, E)︸# ︸
Spectral function

δ()
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nA(p) ≈ CAnD(p)

FA(q, yCW ) ≈ CAFD(q, yCW )

Many body calculations at high momenta indicate that nuclear momentum distributions are 
rescaled versions of the deuteron
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12C, 3.6, 16o

12C, 3.6, 30o

Inelastic contribution increases with Q2

2.2 (GeV/c)20.9 (GeV/c)2

Energy LossEnergy Loss

x = 1

x = 1

Cr
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s 
Se

ct
io
n

DIS begins to contribute at x > 1 
Convolution model

y = 0

y = 0

12C, 5.77, 50o

x = 1
y = 0

Cr
os

s 
Se

ct
io
n

7.4 (GeV/c)2

 We expect that as Q2 increases to see 
evidence  for x-scaling - and Q2 
independence.
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FA2 (⇠) =
ZA

⇠
dzF(z)Fn2(⇠/z)

| Å }
averaging

⌫W

A

2 versus x

2.5 
3.3 
4.1
5.2
6.4
7.4

⌫WA
2 versus ⇠

12C

12C Evidently the inelastic and 
quasielastic contributions cooperate 
to produce ξ scaling.  Is this duality?

x and ⇠ scaling

⌫WA
2

= ⌫ ·
�exp

�M


1 + 2 tan

2

(✓/2) ·
✓
1 + ⌫2/Q2

1 + R

◆��1
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N. Fomin et al, PRL 105, 212502 (2010)

Current data at highest Q2 (JLab 
E02-019) already show partonic-
like scaling behavior at x>1

Super-fast quarks

ξ = 2x/

(

1 +

√

1 +
4m2x2

Q2

)

The Nachtmann variable  has been 
shown to be the variable in which  
logarithmic violations of scaling in 
DIS should be studied. Takes care 
of 1/Q2 corrections

Structure functions: only 
divide through by σMott, not 
σen 

⌫WA
2

= ⌫ ·
�exp

�M


1 + 2 tan

2

(✓/2) ·
✓
1 + ⌫2/Q2

1 + R

◆��1
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Low energy loss side of qe peak

Czyz and Gottfried (1963) suggest electron scattering might 
reveal presence of correlations between nucleons

Correlations and Inclusive Electron Scattering

ωc =
(k + q)2

2m
+

q2

2m
ω′

c =
q2

2m
−

qkf
2m

Czyz and Gottfried proposed to replace the Fermi n(k) 
with that of an actual nucleus. (a) hard core gas; (b) 
finite system of noninteracting fermions; (c) actual large 
nucleus. 
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926 Negele: Mean-field theory of nuclear structure and dynamics

measured cross sections and their experimental uncertain-
ties. Details of the analysis are described in a review arti-
cle (Friar and Negele, 1975) and error envelopes obtained
in this way for a variety of spherical nuclei (Sick, 1974;
Sick et al. , 1975; Friar and Negele, 1977, Sick et al. ,
1979) are compared with DME calculations in Fig. 11.
Whereas the overall agreement appears quite satisfactory,
individual discrepancies between the mean-field theory
and experiment are latent with interesting nuclear struc-
ture information. For example, whereas Ca and Pb con-
stitute good shell closures, Zr is known to have a signifi-
cant depopulation of the lpi~2 and Of&~2 orbitals and cor-
responding occupation of the Og9/2 level. A simple
schematic calculation based on the pairing theory (Negele,
1971) shows that in Zr the correlation correction de-
creases the interior density in the region of 2 fm by
roughly 8%, significantly improving the agreement with
experiment. (Analogous pairing calculations in Ca and
Pb yield no change in the density. ) The Ni nucleus is

another special case. When one calculates its energy as a
function of deformation, one finds it to be exceedingly

IO

IO-(—

soft with respect to quadrupole deformations. Thus the
simple static mean-field approximation is inadequate, and
one must allow for large amplitude collective motion in
the quadrupole degree of freedom. Although the general
formalism for large-amplitude collective motion in Sec. V
has not yet been applied to this nucleus, one observed that
the shapes of the prolate and oblate admixtures in the
wave function are sufficiently different that one expects
the large-interior density fluctuation to be somewhat di-
minished (Negele and Rinker, 1977). In all these cases,
then, one is led to the conclusion that the mean-field ap-
proximation not only describes the systematic behavior of
spherical nuclei throughout the Periodic Table, but also
serves as a valid starting point for systematic examination
of specific structure effects which go beyond the mean
field. Thus the phenomenological component of the ef-
fective interaction is small enough that it is sensible to
evaluate leading corrections to the mean field as if the ef-
fective interaction were actually derived from an underly-
ing two-body potential.
The discussion of the spatial distribution of matter thus

far has dealt essentially with protons, since we have only
considered the charge scattering of electrons. From a
theoretical point of view, given the strong interplay be-
tween neutron and proton distributions in the self-
consistent mean-field theory, it is difficult to imagine how
one could systematically obtain the correct proton distri-
butions throughout the Periodic Table while making sig-
nificant errors in neutron distributions. Nevertheless, al-
though neutron distributions are much more difficult to
measure experimentally and are subject to greater ambi-
guities of interpretations than protons, it is worthwhile to
briefly survey the present status of measurements of neu-
tron distributions.
The least ambiguous probe of neutron distributions is

C
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FIG. 10. Cross sections for elastic electron scattering from
Pb at 502 MeV compared with DME mean-field theory pre-

diction (solid line).

I 2 5 4 5
r(urn)

FIG. 11. Comparison of DME mean-field theory charge dis-
tributions in spherical nuclei (dashed lines) with empirical
charge densities. The solid curves and shaded regions
represent the error envelope of densities consistent with the
measured cross sections and their experimental uncertainties.

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982

Short range correlations 
do exist!
Central density is saturated - nucleons 
can be packed only so close together:  
pch * (A/Z) = constant 

pm [MeV/c]

(e,e’p) at NIKHEF
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Occupation numbers scaled down by a 
factor ∼0.65.
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Ciofi/SimulaBenhar

What many calculations indicate is that 
the tail of n(k) for different nuclei has a 
similar shape - reflecting that the NN 
interaction, common to all nuclei, is the 
source of these dynamical correlations.
The must be accounted for.
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Nuclear Force from Lattice QCD

N. Ishii1,2, S. Aoki3,4 and T. Hatsuda2

1 Center for Computational Sciences, University of Tsukuba, Tsukuba 305–8577, Ibaraki, JAPAN,
2 Department of Physics, University of Tokyo, Tokyo 113–0033, JAPAN,

3 Graduate School of Pure and Applied Sciences,
University of Tsukuba, Tsukuba 305–8571, Ibaraki, JAPAN and

4 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approx-
imation, using the plaquette gauge action and the Wilson quark action on a 324 (! (4.4 fm)4)
lattice. A NN potential VNN(r) is defined from the equal-time Bethe-Salpeter amplitude with a
local interpolating operator for the nucleon. By studying the NN interaction in the 1S0 and 3S1

channels, we show that the central part of VNN(r) has a strong repulsive core of a few hundred MeV
at short distances (r ! 0.5 fm) surrounded by an attractive well at medium and long distances.
These features are consistent with the known phenomenological features of the nuclear force.

PACS numbers: 12.38.Gc, 13.75.Cs, 21.30-Cb

More than 70 years ago, Yukawa introduced the pion
to account for the strong interaction between the nucle-
ons (the nuclear force) [1]. Since then, enormous efforts
have been devoted to understand the nucleon-nucleon
(NN) interaction at low energies both from theoretical
and experimental points of view. As shown in Fig.1,
phenomenological NN potentials are thought to be char-
acterized by three distinct regions [2, 3]: The long range
part (r " 2 fm) is well understood and is dominated
by the one pion exchange. The medium range part
(1 fm ! r ! 2 fm) receives significant contributions from
the exchange of multi-pions and heavy mesons (ρ, ω, and
σ). The short range part (r ! 1 fm) is empirically known
to have strong repulsive core [7], which is essential not
only for describing the NN scattering data, but also
for the stability and saturation of atomic nuclei, for de-
termining the maximum mass of neutron stars, and for

repulsive
core

CD Bonn
Reid93

AV18

0 0.5 1 1.5 2 2.5

300

200

100

0

-100

V
c

(r
) 

[ M
e
V

]

FIG. 1: Three examples of the modern NN potential in the
1S0 (spin singlet and s-wave) channel: CD-Bonn [4], Reid93
[5] and AV18 [6] from the top at r = 0.8 fm.

igniting the Type II supernova explosions [8]. Although
the origin of the repulsive core must be closely related to
the quark-gluon structure of the nucleon, it has been a
long-standing open questions in QCD [9].

In this Letter, we report our first serious attempt to
attack the problem of nuclear force from lattice QCD
simulations [10]. The essential idea is to define a NN
potential from the equal-time Bethe-Salpeter (BS) ampli-
tude of the two local interpolating operators separated by
distance r [11]. This type of BS amplitude has been em-
ployed by CP-PACS collaboration to study the ππ scat-
tering on the lattice [12]. As we shall see below, our
NN potential shows a strong repulsive core of about a
few hundred MeV at short distances surrounded by an
attraction at medium and long distances in the s-wave
channel.

Let us start with an effective Schrödinger equation ob-
tained from the BS amplitude for two nucleons at low
energies [12, 13]:

−
1

2µ
∇2φ(&r) +

∫

d3r′ U(&r,&r′)φ(&r′) = Eφ(&r), (1)

where µ ≡ mN/2 and E is the reduced mass of the nu-
cleon and the non-relativistic energy, respectively. For
the NN scattering at low energies, the non-local poten-
tial U is represented as U(&r,&r′) = VNN(&r,∇)δ(&r−&r′) with
the derivative expansion [2]: VNN = VC(r) + VT(r)S12 +
VLS(r)&L · &S + O(∇2). Here S12 = 3(&σ1 · r̂)(&σ2 · r̂)− &σ1 · &σ2

is the tensor operator with r̂ ≡ |&r|/r, &S the total spin
operator, and &L ≡ −i&r × &∇ the relative angular mo-
mentum operator. The central NN potential VC(r), the
tensor potential VT(r) and the spin-orbit potential VLS(r)
can be further decomposed into various spin-isospin chan-
nels, e.g. VC(r) = V 1

C(r) + V σ
C (r)&σ1 · &σ2 + V τ

C (r)&τ1 · &τ2 +
V στ

C (r)(&σ1 · &σ2)(&τ1 · &τ2). In the phenomenological analy-
sis of the NN scattering phase shift [3], the Schrödinger
equation with a certain parametrization of VNN is solved
and compared with the data. On the other hand, if we

k > 250 MeV/c
15% of nucleons
60% of KE

k < 250 MeV/c
85% of nucleons
40% of KE

Theory suggests a common 
feature for all nuclei
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Ciofi degli Atti, PRC 53 (1996) 1689

This strength must be accounted for when trying to 
predict the cross sections
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In the region where correlations should 
dominate, large x (at low energy loss side 
of qep),

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. It 
should fall rapidly with j as nuclei are dilute.

)
2
A

�

A

(x, Q2)
�

D

(x, Q2)
= a2(A)

áàààÜ
1<x2

3
A

�

A

(x, Q2)
�

A=3(x, Q2)
= a3(A)

áàààÜ
2<x3

Assumption is that in the ratios, 
off-shell effects and FSI largely 
cancel.

Access to SRC via CS Ratios

�2(x, Q2) = �eD(x, Q2) and �j(x, Q2) = 0 for x > j.

�(x, Q2) =
AX

j=2

A

1
j

a

j

(A)�
j

(x, Q2)

=
A

2
a2(A)�2(x, Q

2) +

A

3
a3(A)�3(x, Q

2) +

...

"Evidence for Short Range Correlations from high Q2 
(e,e') reactions", L. Frankfurt, M. Strikman, D.B. Day, 
and M. Sargsian, Phys. Rev. C48 2451 (1993)
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Selection by  kinematics

x

p m
in
 (
Ge

V/
c)

0.5

4.0

Appearance of plateaus is A dependent.
Kinematics: heavier recoil systems do not require as much energy to balance momentum of 
struck nucleon - hence pmin for a given x and Q2 is smaller.
Dynamics: mean field part in heavy nuclei persist to larger values in x

Have to go to higher x or Q2 to insure scattering is not from mean-field nucleon
Should be similar for ν QES
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SRC evidence: A/D ratios QE 

Ratio of cross section (per nucleon) 
shows plateau above x ≈ 1.4, as 
expected if high-momentum tails 
dominated by 2N-SRCs

High momentum tails should yield 
constant ratio if seeing SRC 
(identical 2-body physics)

N. Fomin et al., PRL 108, 092052 (2012): E02-019
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EMC Effect

3 

Measurements of              (EMC, SLAC, BCDMS,…) have shown 
definitively that quark distributions are modified in nuclei. 

EMC Effect and Quark Distributions in Nuclei  

! 

F2
A /F2

D

Observed properties: 
1. x-dependence same for 

all A 

Shadowing:                x<0.1 
Anti-shadowing:  0.1<x<0.3 
EMC effect:                x>0.3 

2. Size of EMC effect 
depends on A (i.e. 
minimum at x=0.7 

Nucleus is not simply an incoherent sum of protons and neutrons 

x

�
A
 / 
�

D

BCDMS (Fe)
SLAC E139 (Fe)
EMC (Cu)

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Measurements of%F2A /F2D%(EMC, SLAC, 
BCDMS,...) have shown definitively 
that quark distributions are modified 
in nuclei.
Nucleus is not simply an incoherent 
sum of protons and neutrons

E03-103 at JLAB Measured EMC 
ratios for light nuclei. Established 
new definition of ‘size’ of EMC 
effect : Slope of line fit from x=0.35 
to 0.7

Conventional” nuclear physics based 
explanations (convolution 
calculations) 

Medium Modifications on quark 
distributions, clusters etc
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10 

EMC Effect and Local Nuclear Density 

9Be has low average density 
!  Large component of structure is 
2!+n   
!  Most nucleons in tight, !-like 
configurations  

EMC effect driven by local rather 
than average nuclear density   

10 

EMC Effect and Local Nuclear Density 

9Be has low average density 
!  Large component of structure is 
2!+n   
!  Most nucleons in tight, !-like 
configurations  

EMC effect driven by local rather 
than average nuclear density   

9Be has low average density 
• Large component of structure 
is 2α+n
• Most nucleons in tight, α-like 
configurations
• EMC effect driven by local 
rather than average nuclear 
density

EMC Effect and Local Nuclear Density

<ρ> from ab initio few-body calculations
- [S.C. Pieper and R.B. Wiringa, Ann. Rev. 
Nucl. Part. Sci 51, 53 (2001)]

Scaled nuclear density = (A-1)/A <ρ> 
--> remove contribution from struck 
nucleon
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EMC Effect and Local Nuclear Density 

9Be has low average density 
!  Large component of structure is 
2!+n   
!  Most nucleons in tight, !-like 
configurations  

EMC effect driven by local rather 
than average nuclear density   

L. B. Weinstein, E. Piasetzky, D. W. 
Higinbotham, J. Gomez, O. Hen, and R. 
Shneor Phys. Rev. Lett. 106, 052301 (2011)

O. Hen, E. Piasetzky, and L. B. Weinstein, 
Phys. Rev. C 85, 047301 (2012)

Arrington, Daniel, Day, Gaskell and Fomin,, 
nucl-ex arXiv:1206.6343.

Short Range Correlations and the EMC Effect

Given the fact that the reaction dynamics 
very different – DIS vs. QE scattering, why 
the same nuclear dependence?   The two 
regions integrate over very different 
parts of the spectral function this 
probably deserves more study.

Friday, October 26, 12
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EMC Effect vs. Separation Energy 
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108AgEMC Effect appears to 
correlate rather nicely with 
separation energy 

! 3He/D appear to spoil the 
trend somewhat 
! Linear fit: $2

% = 1.63 

! Excluding 3He and D, 
    $2

%  = 0.91 

Separation energies calculated using spectral functions including contributions 
from mean-field, correlated part of wave function.  
! Courtesy S. Kulagin see PRC 82, 054614 (2010)  and NPA 765, 126 (2006)  

22 

SRC vs. Separation Energy 

If EMC effect and SRCs stem 
from common origin, then 
correlation with mean 
separation energy should be 
similar 

! Qualitatively, seems to be 
the case, but worse 
quantitatively 
! Linear fit: $2

% = 4.06 
! Excluding 3He and D: 
   $2

%  = 1.88 

Separation energies calculated using spectral functions including contributions 
from mean-field, correlated part of wave function.  
! Courtesy S. Kulagin see PRC 82, 054614 (2010)  and NPA 765, 126 (2006)  
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EMC effect and the SRC 
measure both correlate 
nicely with <SE>

The x > 1 and the x < 1 regions 
integrate over very different 
parts of the spectral function -
this deserves more study.

Separation energies calculated using 
spectral functions including contributions 
from mean-field, correlated part of wave 
function. Courtesy S. Kulagin see PRC 82, 
054614 (2010) and NPA 765, 126 (2006)

Back to the spectral 
function
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Finish
• Inclusive electron scattering in the QES region is a rich source of 

information about the gs properties of nuclei; significant data set 
already exists and easily accessible.

• Different Q2 dependences allow the QES and DIS regimes to be, in 
principal, separated.

• Scaling in terms of scattering from nucleons and partons is 
demonstrated

• SRC  are a significant element in the gs  - they appear to scale with 
local ρA and, surprisingly, are correlated with the EMC effect and 
<SE> is indicated.

• Did not mention: extrapolation to NM, separation of responses, other 
forms of scaling, medium modifications, duality, SF Q2 dependence 
(from DIS)

• Continued collaboration between electron scattering and neutrino 
communities should prove productive

“Inclusive quasi-elastic electron-nucleus scattering'', O. Benhar, D. Day and I. Sick, Rev. Mod. Phys. 80, 189-224, 2008, arXiv:nucl-
ex/0603029
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