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General Features of the Inclusive Spectrum

Structures in the spectra

1 diminish faster with Q2 than
in the nucleon because of
motion - they give way to
smooth and structureless
shape

Two dominant processes
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These dominant processes share the same initial state but
have very different Q2 dependencies

The limits on the integrals
are determined by the
kinematics. Specific (x, Q?)

. dZO' N select specific pieces of
QES in IA o J dk [ dEo,; 6i(/<, E) 5() the spectral function.

dQdv —

Spectral function

5;’2 - f
DIS 7« Jdk[dE W 5k, E)

dQdy e

Spectral function

n(k) = JdE S(k, E)

O ~ elastic (form factor)? W2 scale with In Q° dependence

in DIS region, resonances fall
quickly with Q?

Charge-changing neutrino reaction cross sections for the nucleons in
the nucleus for example CCQES

Opgi — O weak charged current interaction with a nucleon
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Early 1970s Quasielastic Data
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Spectral function S(E, k), not n(k) describes

nuclei: probability of finding a nucleon with initial
momentum k and energy E in the nucleus
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FIG. 6 Nuclear matter spectral function calculated using
correlated basis function perturbation theory (Benhar et al.,
1989).
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What role FSI?

In (e,e’p) flux of outgoing protons strongly suppressed:
20-40% in C, 50-70% in Au

In (e,e’) the failure of IA calculations to explain do at small energy loss

Some of this could be resolved by a rearrangement of strength in SE

Old problem: real/complex optical potential.

Real part generates a shiff, imaginary part a folding of cs, reduction of gep.
Can FSI ever be neglected? - scaling suggests they can.
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Issues about CGA FSI

e Extreme sensitivity to hole size
® On-shell cross sections: nucleon is off-shell by in E by
h/At = h W: modification of NN interaction

e total cross section?
e Unitarity? Folding function is normalized fo one.
¢ Role of momentum dependent folding function (Petraki et al, PRC
67 014605, 2003) has lead to a quenching of the fails.
eComparison to data with this new model for a range of A and Q2
be very useful

"The discrepancy with the measured cross sections increases as q increases,
while the suppression of FSIs due to the momentum dependence of the folding
function appears to be larger at lower momentum transfer.

A different mechanism, leading to a quenching of FSIs and exhibiting the opposite

momentum-transfer dependence still seems to be needed to reconcile theory and
data “ Petraki et al, PRC 67 014605

Friday, October 26, 12



Scaling

® Scaling refers to the dependence of a cross section (a structure
function), in certain kinematic regions, on a single variable.

® At moderate Q2 inclusive data from nuclei has been well described in
terms y-scaling, one that arises from the assumption that the electron
scatters from moving, quasi-free nucleons.

Assumptions & Potential Scale Breaking Mechanisms

No FSI

No internal excitation of (A-1)

Full strength of spectral function can be integrated over at finite g
No inelastic processes

No medium modifications

Direct access to the momentum distribution

o 1 dF(y)

") = (£ 0ep + N - 0pn) - (k) = _231:y ay

y is the momentum of the struck nucleon parallel to the g-vector: y = -q/2 + mv/q

Derived in straightforward way in the PWIA (next two slides)
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y-scaling in PWIA

d°o A
e ; dk [ dEs 04 Si(Es, k) )
X 6(w— Es + Ma — (MP + K22 — (MZ_, + k)12,
dz A Emax kmax 5 —1
7 ZﬁZJ dEQJ dk ko Si(El k) K v
dEdAQO,, - | | J cos Oy
=1 E min Kmin U 9 9
N B Y
0o = (g, w, Kk, Es) = 04(q, w, Y, Emin) K

Emin = Ma—q + M — Mg, Emax:MZ—MA KZQ/(MZ—"(E}—F@ZY]/Z
My = [(w+Ma)? = ¢71"/2

Kmin and kmax are determined from cos O = #1, in Y = Kmin
energy conserving d function:

w—Eg+Ms = (M*+g° +k* +2kq)"% + (M5 _, +k*)"/?
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y-scallng in PWIA

lower limit becomes y= y(q,w)

e upper limits grows with q and because momentum distributions are
steeply peaked, can be replaced with oo

e Assume S(EsK) is isospin independent and neglect Es dependence of O
and kKinematic factor K and pull outside

e At very large q and w, we can let Emax= o0, and integral over Es can be

n(k) = [5(55, k) dE.,

done

= (2T, + NT,, K F(y)

No?v we can pep
write
dEAQO,,
where
Fly)=2x | n(k)kdk
J |yl

-

g Scaling (independent of Q?) of A

QES provides direct access to
momentum distribution

Friday, October 26, 12




E| | 1 1T 1 | S I | | L | E
1072 E Deuteron E02-019 5
103 .;—
N = =
T — ]
S 10t — —
B 5 :
© e f
10-6 ;— 5 _;
EI 1 1 1 | 11 1 1 | 1 1 1 1 | | Ikl | | 11 1 1 ;
0 5
v (GeV)
g®P s K
F(y) = -K/ 10° Fa
(Z * O-ep + N * 0-6’/]) 102 45
o 10
1 dF(y) %
”(k) — O 10"
2Ly dy =
\XE 2
Second use: turn around: predict o at 10
any E, O and v, using parametrization  10%}
of F(y); convert to n(k) and smear R

inelastic ==> convolution model.

y-scaling - simplest system
No internal excitation of

(A-1) system

First use: compare to

exact calculations to

set limits on FSI and
extract high

momentum (> 500

MeV/c!) piece of gs

wave function

Nljmegen -------------- _’
Paris
Argonne V14 -

0=18°, <Q°>=~2.7 =
0=22° <Q’>>~38 *
% 0=26°, <O2> ~48 ©
0=32°, <Q“°>=6.4 0
R
%3 !E%@
E. 3

3 @@%?‘ -

O 01 02 03 04 05 06 07 08 09

k [GeV/c]

Friday, October 26, 12



Z, A= 2 3
102 IIII|IIII|IIII|IIII|IIII|II

Cross section
F(y)

i
1072 — ﬁ: %{T* _
1 i

Inelastic |

4 M

10—4 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1
-1.00 -0.75 -0.50 -0.25 0.00 0.25

Yy (GeV/c)

10% L R I B AN
- Fe
c
o
pr 100 —
O
I ® VS
» >
| T
8 -2
O T A
I :M larger FSI in Fe
||||||||||||||||T|||||||||||| 10—4|||IHI|||||||||||||||||||||
0.5 1.0 1.5 2.0 2.5 3.0 —-1.00 -0.75 -0.50 -0.25 0.00 0.25
Vv (GeV) y (GeV/c)

Friday, October 26, 12



Spectral function integration regions grows with g

3He Integration Region @ y = _0.5
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As q increases, more and more of the spectral function S(k,E) is integrated,
convergence from below.

Is the energy distribution as calculated (scaling occurs at much lower q)? Do
other processes play a role? FSI or/and DIS - what role

Nonetheless, inclusive data in the quasi-elastic region display scaling - Q2
independence: - scaling of the 15" kind. Can be used to accurately estimate
cross sections. A independence and Q? independence: superscaling
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Convergence of F(y,q)

Convergence from above, not below suggests that FSI, known to contribute,
die out with increasing momentum transfers

1.1 T
0.14

-1
F(y) (Mev ")
o
[o0]
L F(y) |(Mpv_1)|
o
o
[0 0]

i

0 (Gev?) 0® (Gev?)

Questions:

e How to account for the fact the binding (the distribution of strength in
S(k,E)) in a y-scaling analysis

e Account for the change in the energy balance when scattering from a
nucleon in a SRC
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y-scaling indicates very high-momenta: model incomplete -

o M 2
strength is spread out in E GICHN [dﬁ[difae, Si(p,E) 6()
AQdy el

Single nucleon knock-out, E # Emin, A-1 system excited =~ et funeren

2
p
u+MA:\/M2+(p+q)2+MA_4+—+3A—$|p|)—<Egr>

2M

CM motion

Yew : Like y but accounting for
excitation energy of residual
system

F "k
_1)* (yGW) - (ZEP + Ng”) |
\ Flyew) = 2»‘”3L IPdPH(P)
VW

Faralli, Ciofi degli Atti & West, Trieste 1999
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Many body calculations at high momenta indicate that nuclear momentum distributions are
rescaled versions of the deuteron

na(p) = Canp(p)

Fa(g, yow) = CaFp(q, yow)
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Inelastic contribution increases with Q2
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Current data at highest Q2 (JLab

Super-Fas’r quarks E02-019) already show partonic-

Structure functions: only like scaling behavior at x>1
divide through by Omott, not N. Fomin et al, PRL 105, 212502 (2010)
0-en -1 :
107 | £
o 1+02/@2\
UWQ = V- / +2tan2(6’/2)- /
M 1+ R
102 | ’
Am?=x2
=2x/ | 1+ \//l |- '
é- / QZ . 10'3 - ]
o
o
s\.\_):
TS 10.4 - 5
The Nachtmann variable has been
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logarithmic violations of scaling in 107 | :
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2 i L - BCDMS: C ' ;
of 1/Q? corrections [ * SLAC: D*EMC(C/D)
10 F x CCFR:Fe (£=0.75,0.85,0.95,1.05) ]
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Correlations and Inclusive Electron Scattering

Czyz and Gottfried (1963) suggest electron scattering might
reveal presence of correlations between nucleons

_k+9® 4 P _ 49
Do o, +2m We =

Czyz and Gottfried proposed to replace the Fermi n(k)
with that of an actual nucleus. (a) hard core gas; (b)
finite system of noninteracting fermions; (c) actual large
nucleus.

CLow energy loss side of qé peak)
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Short range correlations

do exist!

Central density is saturated - nucleons
can be packed only so close together:

peh * (A/Z) = constant

Occupation numbers scaled down by a

factor ~0.65.

. 3
momentum distribution [(GeV/c) s 1]
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Ciofi degli Atti, PRC 53 (1996) 1689

This strength must be accounted for when trying to
predict the cross sections

Friday, October 26, 12



Access to SRC via CS Ratios

2
In the region where correlations should (X &)

A
A—a;(A)oi(x Q)
=2

dominate, large x (at low energy loss side J J
of qgep), A
= Za(Ao( )+
O O é A QZ
Soo) goo) (So 535( )03 (%, K°) +
o © o © o ©

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. It
should fall rapidly with j as nuclei are dilute.

O'Q(X, QZ) — O-gD(X, QZ) and O'J'(X, QZ) =0 for x> J

2 0p (X, Q2>
= = > = a2(A) Assumption is that in the ratios,

A O'D(X, @ )

1<x<2 off-shell effects and FSI largely

3 ol QZ) cancel.

— = = as(A)

A Op=3(x, Q)

2<x<3 "Evidence for Short Range Correlations from high Q2

(e,e') reactions”, L. Frankfurt, M. Strikman, D.B. Day,
and M. Sargsian, Phys. Rev. C48 2451 (1993)
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Selection by kinematics

T
Deuteron Q° from 0.5 to 4
Heavy nucleus

0.25 GeV/c

0.8 - \ 4

0.6 -

0.4 -

Pmin (GeV/c)

0.2 -

Appearance of plateaus is A dependent.

Kinematics: heavier recoil systems do not require as much energy to balance momentum of
struck nucleon - hence pmin for a given x and Q2 is smaller.

Dynamics: mean field part in heavy nuclei persist to larger values in x

Have to go to higher x or Q? to insure scattering is not from mean-field nucleon

Should be similar for v QES
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SRC evidence: A/D ratios
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X
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shows plateau above x = 1.4, as
expected if high-momentum tails
dominated by 2N-SRCs
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N. Fomin et al., PRL 108, 092052 (2012):

E02-019

Q
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High momentum tails should yield
constant ratio if seeing SRC
(identical 2-body physics)
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EMC Effect

Measurements of F»* /F,P (EMC, SLAC,

BCDMS,...) have shown definitively
that quark distributions are modified
in nuclei.

Nucleus is not simply an incoherent
sum of protons and neutrons

Conventional” nuclear physics based
explanations (convolution
calculations)

Medium Modifications on quark
distributions, clusters efc

E03-103 at JLAB Measured EMC
ratios for light nuclei. Established
new definition of ‘size’ of EMC
effect : Slope of line fit from x=0.35
to 0.7
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EMC Effect and Local Nuclear Density

’Be has low average density

® Large component of structure 0.35
i 0.30 | :
IS 20(+n z - E %C 5
® Most nucleons in tight, a-like ERal ]
. 0.20 F .
configurations T ? e
. H0.15 3
® EMC effect driven by local = ;
rather than average nuclear 0.05 E E3He
density 000 Lo v i
0.00 0.02 0.04 0.06 0.08 0.10
Scaled Nuclear Density [fm™®]

Scaled nuclear density = (A-1)/A <p>
--> remove contribution from struck
nucleon

<p> from ab initio few-body calculations
- [S.C. Pieper and R.B. Wiringa, Ann. Rev.
Nucl. Part. Sci 51, 53 (2001)]
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Short Range Correlations and the EMC Effect

197Au

6

a,(A/d)
0.35 x T T T ]
Given the fact that the reaction dynamics 030 ]
very different - DIS vs. QE scattering, why — ozs | Be E ERC
the same nuclear dependence? The two § 0.20 | E . ;
regions integrate over very different S015 ¢ T
parts of the spectral function this S om0k _
probably deserves more study. 0.05 £ E3He 3
OOO E_‘zn]:_]:: PR T TR SR N S T 1 L

7 0.00 0.02 0.04 0.06 0.08 0.10

L.

Higinbotham, J. Gomez, O. Hen, and R.

B. Weinstein, E. Piasetzky, D. W.

Shneor Phys. Rev. Lett. 106, 052301 (2011)

O. Hen, E. Piasetzky, and L. B. Weinstein,
Phys. Rev. C 85, 047301 (2012)

Arrington, Daniel, Day, Gaskell and Fomin,,
nucl-ex arXiv:1206.6343.

Scaled Nuclear Density [fm_s]
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http://arXiv.org/abs/arXiv:1206.6343
http://arXiv.org/abs/arXiv:1206.6343

T - + g Back to the spectral
[ Ag ] .
04 | 56 97Au+_: function
— 0.3 _ 120 27A|+ 4003 ]
g %o ¢ ; EMC effect and the SRC
= I ]
£ 02| $*He 7 measure both correlate
0.1 | $to nicely with <SE>
0 ¢°H
-01 S
10 20 30 40
<E> [MeV] 5 BT v e e ]
45 | a1y JCU |
‘| o1 Lok
The x > 1 and the x < 1 regions el #9Be :
integrate over very different & ° he?
: 25 F
parts of the spectral function - >
, 2L 3
this deserves more study. g ¢He
1.5 ¢
Separation energies calculated using 1L ®2H
spectral functions including contributions . o :
from .mean-ﬁeld, correla’red‘ part of wave & 10 20 30 40 50 60
function. Courtesy S. Kulagin see PRC 82, <E> [MeV]
054614 (2010) and NPA 765, 126 (2006)
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Finish

Inclusive electron scattering in the QES region is a rich source of
information about the gs properties of nuclei; significant data set
already exists and easily accessible.

Different Q¢ dependences allow the QES and DIS regimes to be, in
principal, separated.

Scaling in terms of scattering from nucleons and partons is
demonstrated

SRC are a significant element in the gs - they appear to scale with
local p* and, surprisingly, are correlated with the EMC effect and
<SE> is indicated.

Did not mention: extrapolation to NM, separation of responses, other
forms of scaling, medium modifications, duality, SF Q2 dependence
(from DIS)

Continued collaboration between electron scattering and neutrino
communities should prove productive

“Inclusive quasi-elastic electron-nucleus scattering”, O. Benhar, D. Day and I. Sick, Rev. Mod. Phys. 80, 189-224, 2008, arXiv:nucl-
ex/0603029
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