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Introduction

• Momentum distributions and the spectral function S(k,E).

• Short Range Correlations and Multi-Nucleon Correlations

• Scaling (x, y, !’, " ) 

• Medium Modifications -- tests of  EMC; 6-quark admixtures

• Duality

Inclusive electron scattering from nuclei provides a rich, yet 
complicated mixture of physics that has yet to be fully exploited.

The inclusive nature of these studies make disentangling all the different 
pieces a challenge but experiments over a range of Q2 and with different A 
will help. 
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Inclusive Electron Scattering from Nuclei

Two distinct processes Quasielastic from the nucleons in the nucleus

Inelastic and DIS from the quark 
constituents of the nucleon.

!e
!e′

MA M∗
A−1, −!k

!k
!k + !q, W2 = M2

Inclusive final state means no 
separation of two dominant processes

x > 1 x < 1

x  = Q2/(2m#)

#,$=energy loss



The two processes share the same initial state

d2σ
dΩdν

∝
∫
d#k

∫
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DIS

However they have very different Q2 dependencies
%ei ∝ elastic (form factor)2 W1,2 scale with ln Q2 dependence

n(k) =
∫
dE S(k, E)

There is a rich, if complicated, blend of 
nuclear and fundamental QCD interactions 
available for study from these types of 
experiments.

pX

k1
k2

q

PA
PA - 1

p

Exploit this dissimilar Q2 dependence

The limits on the integrals 
are determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 



Nucleus kF ε
6Li 169 17
12C 221 25
24Mg 235 32
40Ca 251 28
natNi 260 36
89Y 254 39
natSn 260 42
181Ta 265 42
208Pb 265 44

Early 1970’s Quasielastic Data

Li C

Pb

500 MeV, 60 degrees

!q ! 500MeV/c



• The shape of the low & cross section is determined by the momentum 
distribution of the nucleons.

• As Q2 >> inelastic scattering from the nucleons begins to dominate

• We can use x and Q2 as knobs to dial the relative contribution of QES 
and DIS.

The quasielastic peak 
(QE) is broadened by 
the Fermi-motion of the 
struck nucleon.

The quasielastic 
contribution dominates 
the cross section at low 
energy loss (&) even at 
moderate to high Q2.

3He SLAC (1979)



A dependence: higher internal momenta 
broadens the peak



Low energy loss side of qe peak

Shaded domain where scattering is restricted solely 
to correlations. Czyz and Gottfried (1963)

Correlations and Inclusive Electron Scattering

ωc =
(k + q)2

2m
+

q2

2m
ω′

c =
q2

2m
−

qkf
2m

Czyz and Gottfried proposed to replace the Fermi n(k) 
with that of an actual nucleus. (a) hard core gas; (b) 
finite system of noninteracting fermions; (c) actual large 
nucleus. 
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k > 250 MeV/c
15% of nucleons
60% of KE

k < 250 MeV/c
85% of nucleons
40% of KE

Mean field contributions: k < kF

Short Range Correlations (SRCs)

Well understood

High momentum tails: k > kF Calculable for few-body nuclei, nuclear matter.

Dominated by two-nucleon short range correlations.

Isolate short range interaction (and

SRCs) by probing at high Pm (x>1)

Poorly understood part of nuclear structure

Significant fraction of nucleons have k > kF

Uncertainty in short-range interaction leads to
  uncertainty at large momenta (>400-600 MeV/c),
  even for the Deuteron

60% of the K.E.

15% of nucleons

k > 250 MeV/c

40% of the K.E.

85% of nucleons

k < 250 MeV/c

r [fm]

V(r)

~1 fm

0

N-N potential

Calculation of
proton momentum
distribution in 4He

Wiringa, PRC 43

1585 (1991)

High momentum tails: k > kF 
Calculable for few-body nuclei, 
nuclear matter. 
Dominated by two-nucleon 
short range correlations

Short Range Correlations (SRCs)

Isolate short range 
interactions (and SRC’s) by 
probing at high pm: (e,e’p) and 
(e,e’)

Poorly understood part of nuclear 
structure

Sign. fraction have k > kF

Uncertainty in SR interaction leads to 
uncertainty at k>>, even for simplest 
systems

Deuteron

Carbon

NM

Mean field contributions: k < kF

Well understood, Spectroscopic Factors ! 0.65
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Fig. 2. Momentum distributions for 4He, H J: Hamada- 
Johnston potential, RSC: Reid soft core potential, SSCB: de 
Tourreil-Sprung super soft core potential B, UNC: uncor- 
related, for the RSC potential. The other uncorrelated distri- 
butions do not differ appreciably for q > 2 fm-1. 
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Fig. 3. Same as fig. 2, for 160. 

1 1 / ] 
S2(q) = q2 + co ~ - ~  d 3 q'u(lq - q'l)  S2(q ) , S2(q) = (q - q l S  2 l0 0), 

for a purely central interaction where u is the Fourier transform of  this interaction and q the momentum transfer 

(Bethe-Goldstone equation in momentum space). For a central component  of  the Reid potential the second term 

in brackets may be neglected compared to the first term only for momenta  greater than 30 fm -1 . With n(q) 
2 2 1 2 S2(q) (from eq. (3)) the asymptotic behaviour n(q) ~x [(q + co)-  u(q)] is obtained in accord with the result 

obtained from general considerations [ 12]. The higher-order contributions proportional to S 3 which have been 

omitted in eq. (3) can be shown to decrease faster. A physical discussion of this region of extremely high momenta  

is not reasonable, however, as mesonic and relativistic effects surely cannot be neglected here. 

In order to check our assumption that three-body processes may be neglected in the evaluation of the momen- 

tum distribution, we performed some calculations taking into account three-body and some four-body processes, 

i.e. using the FBHF (4) (Faddeev-Brueckne r -Har t r ee -Fock)  approximation of  ref. [8]. No additional terms are 

used in eq. (3), but there is a modification of  S 2 proportional to S 3 so that the corrections included are of  the 

same order S2S 3 as the contributions omitted in eq. (3). 

The difference between our "standard" calculation and the FBHF(4)  calculation therefore gives a rough esti- 

mate of  the order of  magnitude these effects may have. This difference is displayed in fig. 4 and seen to be neg- 

ligible in the high-momentum region. The main effect comes from the modification of the self-consistent single- 

particle wave-functions important  only below 0.5 fm -1 which is due to the presence of three-body terms in the 

s.p. potential. 
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Zabolitzky and Ey, PLB 76, 527

Van Orden et al., PRC21, 2628

Calculations of SRC

Show up at large 
momentum



Figure 11: FC
2 (x) at Q2 = 5GeV 2. Free nucleon response folded with n(k). HF

(dot-dashed line) enhanced by correlations (solid line). L.Conci and M. Traini,

UTF 261/92.

XEMPT Meeting Donal Day

CdA, Day, Liuti, PRC 46 (1045) 1992

L. Conci and M. Traini, UTF 261/92. 

Correlations are accessible in QES 
and DIS at large x (small energy 
loss)

Rozynek & Birse, PRC, 38  (2201) 1988

Q2 = 50

$ (GeV)

Q2 = 2



Scaling

• Scaling refers to the dependence of a cross section, in certain 
kinematic regions, on a single variable. If the data scales in the single 
variable then it validates the assumptions about the underlying physics 
and scale-breaking provides information about conditions that go 
beyond the assumptions. 

• At moderate Q2 inclusive data from nuclei has been well described in 
terms y-scaling, one that arises from the assumption that the electron 
scatters from quasi-free nucleons.

• We expect that as Q2 increases we should see for evidence (x-scaling) 
that we are scattering from a quark that has obtained its momenta 
from interactions with partons in other nucleons. These are super-fast 
quarks.



y-scaling in inclusive electron scattering (3He)

F (y) = σexp

(Zσ̃p+N σ̃n) · K n(k) = −
1

2πy
dF (y)

dy

y is the momentum of the struck nucleon parallel to the momentum transfer and is

determined from energy conservation. Assumption is that we are scattering from a "quasi"

free proton or neutron in the nucleus. We find momenta on the order of 1 GeV/c !

Correlations are the source of high momenta

in the nucleus – probe extreme and rare condi-

tions inside the nuclear volume when the nu-

cleons are nearly overlapping.

Assumption:  scattering takes place from a quasi-free proton or neutron in the 
nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:
y ! -q/2 + m&/q

y-scaling in inclusive electron scattering from 3He

y = 0 at quasielastic peak



y-scaling in PWIA

d2σ

dEdΩe′
=

A∑
i=1

∫
d"k

∫
dEs σei Si(Es, k)

× δ(ω − Es + MA − (M2 + "k′ 2)1/2 − (M2
A−1 +"k2)1/2),

σei = f(q,ω,#k, Es)

M∗

A = [(ω +MA)
2
− q2]1/2

kmin and kmax  are determined from cos ' = ±1

ω − Es +MA = (M2 + q2 + k2 ± 2kq)1/2 + (M2
A−1 + k2)1/2

Emin = MA−1 +M − MA, Emax = M∗

A −MA

d2σ

dEdΩe′
= 2π

A∑

i=1

∫Emax

Emin

dEs

∫kmax

kmin

dk k σei Si(Es, k) k

($
%
%
&

∂ω

∂ cos θkq

$
%
%
&

)
−1

︸ ) ︸
K

Scaling and Correlations

dσQE

dΩdω
=

∫

dEmdp(Zσ̃p + N σ̃n)

×δ(MA − EB + ν − EX)P (p, Em).

EM is the missing energy and determines the invariant
mass of MB such that Em = MB + M − MA and EX =
√

M 2 + (p2 + q2). When B is the A−1 ground state then
the missing energy is minimal Emin ≡ MA−1 + M − MA.

k

k’

X

B

p

A

q

The particular case when Em = Emin defines the y-scaling
variable

y = −
W 2 + M2

A−1 − M2

2W 2

(

|q|− (MA + ν)

[

1 −
4W 2M2

A−1

(W 2 + M2
A−1 − M2)2

]1/2
)

XEMPT Meeting Donal Day

K = q/(M2 + (!k + !q)2)1/2



y-scaling in PWIA
• lower limit becomes y= y(q,$)

• upper limits grows with q and because momentum distributions are 
steeply peaked, can be replaced with "

• Assume S(Es,k) is isospin independent and neglect Es dependence of %ei 
and kinematic factor K and pull outside

• At very large q and $,  we can let Emax= ", and integral over Es can be 
done

n(k) =

∫
S(Es, k) dEs

Now we can 
write

where 

d2σ

dEdΩe′
= (Z σ′

ep + N σ′

en)K
′ F(y)

F(y) = 2π

∫∞
|y|
n(k)kdk

Scaling (independent of Q2) of 
QES  provides direct access to 
momentum distribution



Assumptions & Potential 
Scale Breaking Mechanisms

• No FSI

• No internal excitation of (A-1)

• Full strength of Spectral function can be integrated 
over at finite q

• No inelastic processes

• No medium modifications



Deuteron F(y) 
and 
calculations 
based on NN 
potentials 

Assumption:  scattering takes place from a quasi-free 
proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to 
the momentum transfer:
y ! -q/2 + m&/q

F(y) =
σexp

(Zσp + Nσn)
· K

n(k) = −
1

2πy
dF(y)
dy

SRC region, nucleons with k ! 500 MeV/c



Helium-3

Hanover group, T = 0 and T = 1 pieces (right)

XEMPT Meeting Donal Day

In nuclei the 
distribution of the 
strength in energy 
complicates the 
relationship between 
the scaling function 
and n(k).

 The spectral 
function S(k,E) for 
3He



Theoretical 3He F(y) integrated at increasing q

q = 0.5

q = "

"M = "

Is the energy 
distribution as 
calculated 
(scaling occurs at 
much lower q)?

Do other 
processes play a 
role?

FSI or/and DIS

As q increases, more and more of the spectral function S(k,E) is integrated.



12C, 3.6, 16o

12C, 3.6, 30o

Inelastic contribution increases with Q2

2.2 (GeV/c)20.9 (GeV/c)2

Convolution model

Energy LossEnergy Loss

x = 1

x = 1

C
ro

ss
 S

ec
ti
on

DIS begins to contribute at x > 1, y < 0

y = 0

y = 0



3He3He

IronIron



Scaling of the response function shows up 
in a variety of disciplines. Scaling in 
inclusive neutron scattering from atoms 
provides access to the momentum 
distributions.

Momentum distributions are “distorted” 
by the presence of FSI

FSI have a 1/q dependence

y-scaling as a test for presence of FSI

Weinstein & Negele PRL 49 1016 (1982)



Final State Interactions

658 H. Meyer-Hajduk et al. / Inclusive electron scairering 
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Fig. 11. Differential cross section of inclusive electron scattering from ‘He as function of the energy loss 

0 of the electron. Results of fig. 7 are repeated. Compared are theoretical predictions based on the two 

different models of sect. 3.2.1 and 3.2.2 for nucleonic structure functions in the region of pion production. 

The solid curve refers to the meson-theoretic model of sect. 3.2.2, the dashed curve to the phenomenologi- 

cal model of sect. 3.2.1. In contrast to the results of fig. 7 the nucleonic form factors are taken from ref. ‘“I. 
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D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. (18) and (19) describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of
hadrons other than protons and neutrons one has to re-
place wN

1 and wN
2 given by Eqs. (23) and (24) with the

inelastic nucleon structure functions extracted from the
analysis of electron-proton and electron-deuteron scat-
tering data (Bodek and Ritchie, 1981). The resulting IA
cross section can be written as in Eq. (6), the two nuclear
structure functions W1 and W2 being given by (Benhar
et al., 1997)

W1(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃) +
1
2

wp
2(|q|, ω̃)

m2

|k × q|2

|q|2

]
+ . . .

}
(35)

and

W2(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃)
q2

|q|2

(
q2

q̃2
− 1

)

+
wp

2(|q|, ω̃)
m2

(
q4

|q|4

(
Ek − ω̃

Ekω̃ − k · q
q̃2

)2

− 1
2

q2

|q|2
|k × q|2
|q|2

)]
+ . . .

}
, (36)

where the dots denote the neutron contributions.
Eqs. (35) and (36) are obtained using the prescription
of Eq. (26) (de Forest, 1983) to preserve gauge invari-
ance. Note that the standard expression (Atwood and
West, 1973), widely used in studies of nuclear effects in
deep inelastic scattering, can be recovered from the above
equations replacing ω̃ → ω and Ek → MA − ER.

As an example, Fig. 5 shows the quasi-elastic (dashed
line) and total (solid line) inclusive cross sections of uni-
form nuclear matter, at beam energy Ee = 3.595 GeV
and scattering angle θ = 30◦, evaluated using a phe-
nomenological fit of the nucleon structure functions wN

1
and wN

2 (Bodek and Ritchie, 1981) and the above men-
tioned spectral function (Benhar et al., 1989).

The data show that the transition from the quasi elas-
tic to the inelastic regime, including resonant and nonres-
onant pion production as well as deep inelastic processes,
is a smooth one, thus suggesting the possibility of a uni-
fied representation.

The approach based on NMBT and the IA yields a
good description of the measured cross section at energy
loss ω >∼ 1 GeV, corresponding to x <∼ 1.3 (note that in
the kinematics of Fig. 5 the top od the quasi free bump
corresponds to ω = ωQE ∼ 1.4 GeV). On the other hand,
the data at lower energy loss are largely underestimated.

FIG. 5 Inclusive electron scattering cross section at Ee =
3.595GeV and θ = 30◦. The data points represent the extrap-
olated nuclear matter cross section (Day et al., 1989) while
the solid and dashed lines show the results of IA calculations
carried out with and without inclusion of the inelastic contri-
butions, respectively (Benhar et al., 1991).

The failure of IA calculations to explain the measured
cross sections at ω % ωQE has long been recognized, and
confirmed by a number of theoretical studies, carried out
using highly realistic spectral functions (Benhar et al.,
1989; Ciofi degli Atti et al., 1992; Meier-Hajduk et al.,
1983), see e.g. fig.6. It has to be ascribed to FSI between
the struck nucleon and the spectator particles, that move
strength from the region of the quasi free bump to the
low ω tail. This mechanism will be analyzed in the next
Section.

FIG. 6 Inclusive electron scattering cross section at Ee =
7.26GeV and θ = 8◦ for 3He. The data points are from (Day
et al., 1979), the solid line shows the IA calculation based on
the 3He spectral function (Meier-Hajduk et al., 1983). Ap-
proximate values for the scaling variable x are indicated on
top.

In conclusion, NMBT and the IA provide a consistent
and computationally viable approach, yielding a quanti-
tative description of the data in both the quasi elastic
and inelastic regime, with the only exception of the re-
gion of very low energy loss. Theoretical studies in which

In (e,e’) the failure of IA calculations to explain d% at small energy loss

Meier-Hadjuk NPA 395, 332 1983

In (e,e’p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

FSI has two effects: energy  shift and a redistribution of strength

Benhar et al proposed approach based on NMBT and Correlated Glauber 
Approximation
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distribution function g(ri, rj) results in a strong quench-
ing of the tails and an enhancement of the peak of Fq,
leading to a significant suppression of FSI effects.

The effect of FSI is illustrated in Fig. 12, showing
the inclusive cross section of uniform nuclear matter
at a beam energy Ee = 3.595 GeV and a scattering
angle θ = 30◦, corresponding to momentum transfer
|q| ∼ 2 GeV/c. Comparison between theory and the

FIG. 12 Inclusive electron scattering cross section at Ee =
3.595 GeV and θ = 30◦. The data points represent the ex-
trapolated nuclear matter cross section (Day et al., 1989),
while the solid and dashed lines show the results obtained
including FSI effects, with and without taking into account
correlation effects. For comparison, the IA cross section is
also shown by the dot-dash line (Benhar et al., 1991).

data in Fig. 12 clearly show that at ω < 1.1 GeV, where
quasielastic scattering dominates6 and which correspond
to x > 1, x = Q2/2mω being the Bjorken scaling vari-
able, FSI effects are large and must be taken into account.
The results obtained within the CGA are in good agree-
ment with the data in the region ω > 800 MeV, i.e. for
x <

∼ 1.8, while at higher x the experimental cross sec-
tion is largely overestimated. The dashed line has been
obtained neglecting the effect of dynamical correlations
on the distribution function g(ri, rj). Comparison be-
tween the solid and dashed lines provides a measure of
the quenching of FSI due to NN correlations.

The ability of the CGA to provide a quantitative un-
derstanding of FSI in the region x < 2 is further illus-
trated in Fig. 13, showing the cross section ratio

R =
dσ(e +56Fe → e′ + X)

dσ(e +2H → e′ + X)

2

56
, (51)

at Ee = 3.595 GeV and θ = 25◦. Note that R of Eq. (51)
is only defined up to y ∼–700 MeV/c, corresponding to

6 In the kinematics of Fig. 12, inelastic processes only contribute
∼ 5% of the inclusive cross section at ω = 1.1 GeV, and become
negligibly small at lower ω.

FIG. 13 Ratios of inclusive cross sections of iron and deu-
terium at Ee = 3.595 GeV and θ = 25◦. Solid line: full cal-
culation; dashed line: IA calculation, neglecting FSI in both
iron and deuteron; dot-dash line: calculation carried out using
the approximate spectral function of Eq. (37) (Benhar et al.,
1995b).

x = 2, the kinematical limit for inclusive scattering off
an A=2 target (for the definition of y see Sec. VI).

The solid line in Fig. 13 corresponds to the full CGA
calculation, providing a good description of the experi-
ments over the whole range of y, whereas the IA results,
represented by the dashed line, lie well below the data
at y < −200 MeV/c (x > 1.5). For comparison, Fig. 13
also shows the results obtained using the approximate
spectral function of Eq. (37), which turn out to largely
overestimate the data at negative y.

Notwithstanding its success in describing the existing
inclusive data at large negative y, the CGA appears to
consistently overestimate FSI effects at larger −y. As the
validity of the eikonal approximation is well established
in the kinematical region apposite to scattering of few
GeV electrons, possible corrections to the CGA scheme
are likely to be ascribable either to modifications of the
NN scattering amplitude or to the inadequacy of the ap-
proximations leading to the convolution expression for
the cross section.

It has been pointed out (Benhar et al., 1991) that the
use of the free-space amplitude to describe NN scattering
in the nuclear medium may be questionable. Pauli block-
ing and dispersive corrections are known to be important
at moderate energies (Pandharipande and Pieper, 1992).
However, their effects on the calculated inclusive cross
section have been found to be small in the kinematical
region corresponding to |q| >

∼ 2 GeV/c, and decrease as
|q| increases (Benhar et al., 1995a). Corrections to the
amplitude associated with its extrapolation to off-shell
energies are also expected to be small at |q| > 2 GeV/c
(Benhar and Liuti, 1996).

Modifications of the free-space NN cross section may
also originate from the internal structure of the nucleon.

FSI, correlation effects

FSI

IA

NM at 3.595, 30o

4He at 3.595, 30o

Final State Interactions in CGA

Benhar et al. PRC 44, 2328

Benhar, Pandharipande, PRC 47, 2218

Benhar et al. PLB 3443, 47



σ(x, Q2) =
A∑

j=1

A
1
j
aj(A)σj(x, Q2)

=
A
2
a2(A)σ2(x, Q2) +

A
3
a3(A)σ3(x, Q2) +

...

In the region where correlations 
should dominate, large x,

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. 
It should fall rapidly with j as nuclei are dilute.

⇒
2
A
σA(x, Q2)
σD(x, Q2)

= a2(A)

!"""#
1<x≤2

3
A

σA(x, Q2)
σA=3(x, Q2)

= a3(A)

!"""#
2<x≤3

In the ratios, off-shell effects and 
FSI largely cancel.

CS Ratios and SRC

σ2(x, Q2) = σeD(x, Q2) and σj(x, Q2) = 0 for x > j.

aj(A) is proportional
to probability of finding
a j-nucleon correlation



Ratios and SRC 
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FIG. 4: Cross section (A/3He) ratios at large x as measured in CLAS.

state interactions, due to the different mix of nn, np, and pp correlations in non-isoscalar nuclei.
However, there are calculations indicating that there are significant final state interactions that do
not vanish rapidly as Q2 increases, and which do not cancel in the target ratios [19] (i.e. do not come
from short range configurations that are identical in all nuclei). This calculation indicates that the
FSI (when including inelastic channels) has a very weak Q2 dependence and will persist, challenging
our interpretation of the impulse approximation analysis. In addition, it predicts that the FSI effects
will increase the x > 1.5 cross section in iron by approximately a factor of ten, and that even in the
ratio of iron to deuterium, there is a factor of five effect from these FSIs. An important portion of
the proposed measurement is the ability to test these precisions of FSIs by extracting absolute cross
sections for x > 1.5 on a variety of few-body (and heavy) nuclei over a range of Q2.

For the deuteron, which is dominated by the simple two-body breakup assumed in an impulse
approximation analysis, we can extract the nucleon momentum distribution from the inclusive data
without the complications caused by neglecting the separation energy of the full spectral function.
The momentum distribution for the deuteron as extracted from experiment E89-008 is shown in
Fig. 5 [3]. The normalization of the extracted momentum distribution is consistent with unity,
and the high momentum components are in good agreement with calculations based on modern
two-body nucleon–nucleon potentials. This sets limits on the impact of FSI, even in the region
dominated by short range correlations, indicating that the scattering is consistent with the impulse
approximation and that final state interactions much smaller than those observed in coincidence
A(e,e’p) measurements, or those predicted in some calculations. In the proposed measurements, we
will extract absolute cross sections for 2H, 3He, and 4He, not available for the CLAS results, which
will allow us to set limits on the size (and A dependence) of final state interactions.

The extension of these ratio measurements to higher Q2 will allow us to better test the x and Q2

aj(A) is proportional
to probability of finding
a j-nucleon correlation

CLAS data
Egiyan et al., PRL 96, 
082501, 2006

2
A
σA
σD

= a2(A); (1.4 < x < 2.0)

FSDS, Phys.Rev.C48:2451-2461,1993

(2N !20%
(3N !1%



The solution

• Direct ratios to 2H, 3He, 4He out to large x and over wide 
range of Q2

• Study Q2, A dependence (FSI)

• Absolute Cross section to test exact calculations and FSI

• Extrapolation to NM

Arguments about role of FSI

Benhar et al.: FSI includes a 
piece that has a weak Q2 
dependence, Benhar et al. PLB 3443, 47

There is the cancellation of 
two large factors (! 3) that 
bring the theory to describe 
the data. These factors are Q2 
and A dependent



Extrapolation of Responses
• Possible to extrapolate nuclear response to NM

• incoherent sum of contributions

• average density in nuclear interior and nuclear shapes are ! 
A-independent

• Response can be separated into a volume component ∝ A and 

a surface piece ∝ A2/3 

• Ratio of surface to volume goes as A-1/3 and extrapolation of 
nuclear response per nucleon to A-1/3 = 0 (A)") yields NM



Extrapolation Procedure - local density approximation

σ(q,ω) =
∫
S(k, E, ρ(r)) F d$k dE d$r ρ($r) d$r

Spectral function S(k,E,*) depends on (k,E) and the local nuclear 
density *(r)

Explicit dependence on A, split density into 2 terms ρc + ρs

ρc(r < Ro) = ρo pc(r > Ro) = 0 hard sphere

ρs ≡ ρc − ρ(r) surface peaked (with total volume zero)

*c largely independent of A, with Ro = ro A1/3.  
*s is a universal function of (Ro - r) and has a shape independent 
of A and is significantly different from zero, only at the surface

These two terms give different contributions to the nuclear 
response:



Extrapolation Procedure - local density approximation

%c/A in the limit A ) " in the nuclear matter response per nucleon

1)

2)

σc = A
∫
S(ρo)Fd#k dE

σs = A2/34πr2o

∫
S(ρ(r))Fd$kdE ρs(r)dr

This contribution represents the difference between the nucleons 
with density *c and the nucleons have finite surface thickness

σ(q,ω)/A = σc(q,ω)/A + σs(q,ω)/A

=

∫
S(ρ0) · F · d$KdE +

A−1/3
∫
S(ρ(r)) · F · d$KdE · 4πr20 · ρs(r)dr

The total nuclear response, divided by A,

after angular integral is done



Linear dependence on A-1/3  E= 3.6 GeV, '= 16, $= 180 MeV

Day et al., PRC 40, 1011

$ $

q q

Carbon Iron



2.5 
3.3 
4.1
5.2
6.4
7.4

x and ξ scaling
An alternative view is suggested when the data (deuteron) is presented 
in terms of scattering from individual quarks

νWA
2 versus x νWA

2 versus ξ

νWA
2 = ν ·

σexp

σM

[
1 + 2 tan2(θ/2) ·

(
1 + ν2/Q2

1 + R

)]−1

x =
Q2

2Mν
ξ =

2x

1 +
√
1 + 4M2x2/Q2

→ x

2H
2H



FA2 (ξ) =
∫A

ξ
dzF(z)Fn2(ξ/z)

︸ # ︸
averaging

The Nachtmann variable (fraction " of 
nucleon  light cone momentum  p+)  has 
been shown to be the variable in which  
logarithmic violations of scaling in DIS 
should be studied.

Local duality (averaging over finite range 
in x) should also be valid for elastic peak 
at x = 1 if analyzed in "

νWA
2 versus x

2.5 
3.3 
4.1
5.2
6.4
7.4

νWA
2 versus ξ

12C

12C

Evidently the inelastic and quasielastic 
contributions cooperate to produce " 
scaling.  Is this duality?



Medium Modifications generated by high density configurations

> 5 times nuclear 
matter densities 

0.6 fm separation 

1.7 fm separation 

Nucleon separation is 
limited by the short 
range repulsive core 

High Density Configurations

nucleon charge radius ~ 0.86 fm

Ave. separation ~1.7 fm in heavy nuclei

Nucleons are already closely packed in nuclei

Nucleon separation is limited by

the short range repulsive core

Average
nuclear
density

1.7 fm separation

Potential between

two nucleons

r [fm]

V(r)

~1 fm

0

1.2 fm separation

3x nuclear
matter

0.6 fm separation

>5 times
nuclear matter
densities

Even for a 1 fm separation, the
central density is ~4x nuclear matter.

Comparable to neutron star densities!

High enough to modify nucleon structure?

Comparable to neutron star densities! 

High enough to modify nucleon structure?

Gold nucleus

R = 1.2A1/3

Volume =
4

3
πR

3
! 1400fm

3

A single nucleon, r = 1 fm, has a volume of 4.2 fm3 
197 times 4.2 fm3 ! 830 fm3

60% of the volume is occupied - very closely packed!

Even for a 1 fm separation, 
the central density is about 

4x nuclear matter

To which nucleon does the quark belong?



http://faculty.virginia.edu/qes-archive/index.html

http://faculty.virginia.edu/qes-archive/index.html
http://faculty.virginia.edu/qes-archive/index.html


Summary
• Inclusive QES is a rich source of information about 

the gs properties of nuclei, significant data set 
already exists and easily accessible.

• Different Q2 dependences allow the QES and DIS 
regimes to be, in principal, separated.

• Extreme sensitivity to correlations and FSI and 
these are moderately well understood

• Existing data can be used to extrapolate to NM and 
to interpolate to gain estimates for nuclei for which 
no data exists.

• Did not mention: separation of responses, other 
forms of scaling, medium modifications, duality, SF Q2 
dependence (from DIS)

Review paper (Benhar, Day and Sick) nucl-ex/0603029, new version soon, RMP
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Convergence of  F(y,q)
3He

3He

Fe

Fe



Relation to charged current neutrino-nucleus 
scattering

e + A → e
′
+ X

νl + A → l
−
+ X

dσ2

dΩldEl
=

G2

32π2

| #k′ |

| #k |
LµνW

µν

d2σ
dΩdν

∝
∫
d#k

∫
dEσei Si(k, E)︸#︸

Spectral function

δ()

Both can be cast in the same form

σei → σνi

dσ2

dΩe′dEe′
=

α2

Q4

E′e
Ee

LµνW
µν

weak charged current interaction with a nucleon



B. Frois / Electron scattering at intermediate energy 59c 

"QUARKS" 

PROTON x-l  
xLZMIT 

FIGURE 1 
Schemat ic re~resent~t jon2 of  the nuctear response funct ion to efectromaqnet ic 
probes.  D2 is the four vector ~~nturn transfer defined by if2 = ?j2 -  G2 and Y 
is the energy transfer v = E -  E '  fv E w) .  The absorpt ion of  real  photons 
(02 = 0)  is a purely transverse exci tat ion dominated bv the giant  resonance 
below the pion threshold and by the data resonance abave the pion threshold.  
For lepton scat tering (D2 )  D)  the absorbed photon is virtual .  This enables not  
only to vary ?j  and w independent ly,  but  also to have longi tudinal  and trans-  
verse exci tat ions.  Lepton scat tering on bath a nucleus and a proton has been 
represented.  This comparison stresses the modificat ion of  the response funct ion 
due to the nuclear medium.  The very deep inelast ic region is the region where 
both D2 and v are extremely large.  In this region scal ing effects are observed 
giving clear evidence of  the presence of  quarks.  Differences in the scal ing 
behavior of  heavv nuclei  such as the observat ions of  the European Muon Col labo-  
rat ion (EMC)  are interpreted as modificat ions of  quark dynamics in the nuclear 
medium.  

independent ly.  West3 predicted about  ten years ago that  the response funct ion 

should then depend only an the variable y,  defined by y = k 6.  This variable 

is the component  of  the momentum t  of  the knocked out  nucleon paral lel  to the 

momentum transfer 6.  The experimental  data plot ted as a funct ion of  y al l  l ie 

on the same curve represent ing the scal ing funct ion Ftyf .  This can be used to 

map out  ~~nturn distribut ions at  very high ~~nturn transfers provided that  

final  state interact ions and relat ivist ic effects are understood.  Only two 

experiments at  SLAC on deuterium4 and %e [ref .5]  have reached the very high 

momentum region where the condi t ion of  val idi ty q >> kF is sat isfied.  Roth 

show clearly this scal ing behavior.  At  present  none of  the three-body 

e

q

e+

k

X

27m

Q1 Q2 Q3
Dipole



 

Sensitivity to SRC increase with Q2 and x
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We want to be able to isolate 
and probe two-nucleon and 
multi-nucleon SRCs

Dotted = mean field approx. 
Solid = +2N SRCs. 
Dashed = +multi-nucleon. 

11 GeV can reach Q2= 20( 13) GeV2 at x = 1.3(1.5)
#  - very sensitive, especially at higher x values 

x = 1

x = 1.5

+ multi-nucleon

+2N SRC

mean field



Approach to Scaling (Carbon)

Convolution model
QES
RR (W2 < 4)
DIS (W2 > 4)

5.2 (GeV/c)2 7.4 (GeV/c)2

Scaling appears to work well even 
in regions where the DIS is not 
the dominate process

We can expect that any scaling 
violations will melt away as we go 
to higher Q2

QES < RR >> DIS QES $ DIS = << RR



Formalism dσ2

dΩe′dEe′
=

α2

Q4

E′e
Ee

LµνW
µν

Lµν = 2
[

kµek
ν
e′ + kνek

µ
e′ − gµν(keke′ )

]

Wµν =
∑

X

〈0|Jµ|X〉〈X|Jν |0〉δ(4)(p0 + q − pX)

Currents can be written as sum of one-body currents which (eventually) allows 
(See O. Benhar)

Wµν(q,ω) =

∫
d3k dE

(
m

Ek

)[
ZSp(k, E)w

µν
p (q̃) + (A − Z)Sn(k, E)w

µν
n (q̃)

]

where w
µν describes the e/m response of a bound nucleon with momentum k

which consists of an elastic and inelastic component.

d2σ
dΩdν

∝
∫
d#k

∫
dEσei Si(k, E)︸#︸

Spectral function

δ()QES in IA

d2σ
dΩdν

∝
∫
d#k

∫
dE W

(p,n)
1,2 Si(k, E)︸#︸

Spectral function

DIS

G
p,n
E (Q2) and G

p,n
M (Q2)

W
p,n
1,2(Q

2, ν) → W
p,n
1,2(x)

+ log(Q2) corrections



Formalism

d2σ

dΩe′dEe′
=

(

dσ

dΩe′

)

M

×

[

W2(|q|,ω) + 2W1(|q|,ω) tan
2 θ

2

]

d2σ

dΩe′dEe′
=

(

dσ

dΩe′

)

M

[

Q4

|q|4
RL(|q|,ω)

+

(

1

2

Q2

|q|2
+ tan2

θ

2

)

RT (|q|,ω)

]

RT (|q|,ω) = 2W1(|q|,ω)
Q2

|q|2
RL(|q|,ω) = W2(|q|,ω) −

Q2

|q|2
W1(|q|,ω)

dσ2

dΩe′dEe′
=

α2

Q4

E′e
Ee

LµνW
µν

Lµν = 2
[

kµek
ν
e′ + kνek

µ
e′ − gµν(keke′ )

]

Wµν =
∑

X

〈0|Jµ|X〉〈X|Jν |0〉δ(4)(p0 + q − pX)



5.2 (GeV/c)2 7.4 (GeV/c)2

Approach to Scaling (Deuteron)

Convolution model
QES
RR (W2 < 4)
DIS (W2 > 4)

Scaling appears to work well even 
in regions where the DIS is not 
the dominate process

We can expect that any scaling 
violations will melt away as we go 
to higher Q2

QES < RR >> DIS QES ≅ DIS << RR



νWA
2 versus ξ

F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

Preliminary Results - Deuteron

νWA
2 versus x
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F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

νWA
2 versus x

Preliminary Results - 3He

νWA
2 versus ξ
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Preliminary Results - 12C

F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

νWA
2 versus x

νWA
2 versus ξ
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Sensitivity to non-hadronic components

13

out as source of the EMC effect, because they would require very large non-hadronic components
which were often excluded by other measurements. Figure 12 provides a simple example: It shows
the nuclear structure function for deuterium, as calculated from a convolution of neutron and proton
structure functions (red), and compares it to the structure function obtained by assuming that 5%
of the deuteron wave function is described by a 6-quark bag, using the model of Mulders and
Thomas [34] for the quark distribution for the 6-q bag. The difference is at most 2% throughout
the region of large EMC effect (0.3 < x < 0.8), and so one would need an extremely large exotic
component in nuclei to explain the EMC effect in terms of this kind of non-hadronic contribution in
nuclei.

FIG. 12: The left figure shows the Deuteron valence quark distribution from a convolution of proton and neutron quark
distributions (dashed red), and with the inclusions of a 5% 6-quark bag component (blue). The dotted green line shows the
contribution from the 6-quark bag component. The right figure shows the ratio of F2 with the 6-quark bag contribution to F2

with no 6-quark contribution.

Many of these early models attempted to explain the entire EMC effect in terms of exotic expla-
nations, while we now know that much (if not all) of the effect at large x is due to binding. While
there is insufficient data at present to make precise comparisons between calculations of binding
effects and the data, it is clear that non-hadronic degrees of freedom do not need to be large enough
to explain the 10-20% modifications to the quark distributions in nuclei.

One can gain orders of magnitude more sensitivity to such configurations by examining the struc-
ture function at x > 1. A six-quark bag contribution breaks down the individual identities of the
two nucleons, allowing a greater sharing of momentum between the quarks in the two nucleons and
enhancing the distribution of high-momentum quarks. While this has a small impact in the region of
the EMC effect, it has a much larger effect at x > 1, where the quark distributions fall off extremely
rapidly. Figure 13 shows the same models of the quark distributions in deuterium as Fig. 12: A
convolution of proton and neutron quark distributions, and a mix of 95% proton plus neutron, and
5% contribution from a 6-quark bag. In this case, the quark distribution for the simple convolu-
tion model dies off rapidly above x = 1, and so the contribution from the 6-quark bag can lead to
enhancements of 100’s of percent in the structure function, compared to the percent level effects
observed for x < 1. While we show here the example of a 6-quark bag, any configuration in which
there is direct sharing of the momentum between the quarks in the two nucleons will lead to an
enhancement of this kind, with a similar increase in sensitivity in these large x structure functions.
Larger effects might be observed in heavier nuclei, but one needs a quantitative understanding of the
distribution of high momentum nucleons to provide a reliable “baseline” calculation for the purely
hadronic picture. Measurements of quasielastic scattering at large missing momentum, planned for 6
and 12 GeV, combined with the large x ratios proposed here, should provide significant information

14

on the short range correlations that provide the high-momentum part of the spectral function, and
allow us to separate the contribution of superfast quarks that come from high-momentum nucleons
and those that come from other configurations in nuclei.

FIG. 13: Same as Fig. 12, but showing the effect of a small 6-quark bag component in the large x region. The blue circles
indicated the projected measurements, with uncertainties smaller than the points shown.

Here we will be DIS dominated at least up to x = 1.3; however, for higher x values, the quality of
scaling at lower Q2 indicates that deviations from the scaling limit should be relatively small even
for x = 1.4 − 1.5 . Our measurements of the Q2-dependence for selected targets will allow us to
investigate this.

We can see from Fig. 6 that for large x and Q2, the scattering is dominated by scattering from
the short range correlations in nuclei. This makes it clear that it will still be important to have
quantitative measurements of the contributions of short range correlations, although any uncertainty
in our knowledge of the strength and detailed structure of these contributions will partially cancel
in the ratio. It also provides another way to view the sensitivity to these non-hadronic components.
The cross section is dominated by scattering from these short range correlations, which represent
two or more nucleons in very close proximity, and therefore represents scattering from a high density
configuration in the nucleus. It is then natural that one would have much greater sensitivity to
modification of the nucleon structure when using the scattering kinematics to isolate scattering from
high density configurations, thus probing the quark structure as a function of local density, rather
than average nuclear density.

V. OTHER TOPICS OF INTEREST

In addition to providing information about short range correlations and parton distributions at
x > 1, these measurements will provide data that can be used to study duality and to make precise
measurements of the nuclear dependence of QCD moments. Current moment analyses are limited
at moderate to high Q2 values by the knowledge of the structure function at x > 1, especially for
the higher moments [35]. Combining this data with lower x measurements from duality studies of
hydrogen and deuterium will allow a more precise determination of the first several moments of the
nuclear structure function. A comparison of the moments of deuterium and hydrogen may allow a
determination of the moments for the neutron without some of the theoretical ambiguities that arise
when attempting to directly extract the neutron structure function from data on nuclei.

This data will also provide new ways to probe the details of duality in nuclei [4, 30, 36, 37]. Studies
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