SHMS NGC Cerenkov

Donal Day University of Virginia

Hall C Readiness Review August 24 & 25, 2016 Newport News

1

Outline

- HMS
 - Recent Performance
- SHMS Nobel Gas
 Cerenkov
 - How it got done
 - Design Principles and Constraints

- Expected Performance
- Construction Details
- Status
- Extra Parts
- Acknowledgements
- Extra Slides

We have done this before

Figure 3.13: Čerenkov detector geometry.

How it got done

- Design and Simulation UVa
- Tank Drawings and Fabrication
 JLAB
- Design Procurement/Fabrication of everything inside the tank; mirrors, pmts, mirror mounts, pmt mounts, etc: UVa
- Glass blanks: 43 by 43 cm by 3mm with R = 135 cm Rayotek Scientific, Inc
- Measure Shapes Apex Metrology
- Roughness Examination UVa's Zygo white light interferometer

- Glass Coating: Al followed by MgF₂ UV reflectance to exceed 75% (at 150 nm) CERN EP-DT Group
- PMTs and and bases: 14 stage, low noise, 5 inch quartz window, positive HV: 9823QKB04 (PMT) and C643KFP-01 (divider) ET Enterprises Ltd, Electron Tubes, UK
- Magnetic Shields Ad-Vance Magnetics
- Gas Handling JLAB
- Tedlar Dupont
- Window and Port Foam Seals Precision Sheet Metal Fabrication

Recent HMS Cerenkov Performance

5 inch Burle PMT 8854 coated with WLS

SHMS PID Requirements : negative polarity

Experiment	P (GeV/c)	Req′d e⁻:π⁻ Disc.	Spec'd NG Cerenkov	Spec'd Calorimeter	Total Expected
E12-06-101 (Fpi-3)	2.2 - 8.1	4.5●10 ³ :1			
E12-06-104 (σ _L /σ _T)	5.4 - 5.8	10 ³ :1	50:1		
E12-07-103 (pion factorization) (d)	2.4 - 8.5	10 ³ :1		>200:1	
E12-06-105 (x>1)	4.8 -10.6	5•10 ³ :1	Cerenkov	(1000:1 above	>104:1
E12-06-110 (c)	2.2 - 6.8	10 ³ :1	gives up to	6 Gev/C)	
E12-06-121 (g ₂ ^{n,} d ₂ ⁿ)	6.3 - 7.5	>102:1			

- 4 overlapping spherical mirrors
- R = 135 cm, 43 by 43 cm
- 2 m of active length

Noble gas at 1 Atm

Threshold condition : $(1 - \beta) < (n - 1)$

Choice of gases

Argon up to 6 GeV and a mixture of Argon and Neon up to 11 GeV

Full Featured Geant 4 Simulation

V Mamyan, M. Yurov

Photoelectron Yield

$$N_{e} = 2\pi a (1 - \frac{1}{\beta^{2} n^{2}}) \int_{\lambda_{1}}^{\lambda_{2}} \epsilon_{c}(\lambda) QE(\lambda) G(\lambda) \frac{d\lambda}{\lambda^{2}} \int_{0}^{L} dx$$
$$= AL(1 - \frac{1}{\beta^{2} n^{2}})$$

200 cm active length, 80% of vendor's QE

Argon 4x

Photoelectron Yield

$$N_{e} = 2\pi a (1 - \frac{1}{\beta^{2} n^{2}}) \int_{\lambda_{1}}^{\lambda_{2}} \epsilon_{c}(\lambda) QE(\lambda) G(\lambda) \frac{d\lambda}{\lambda^{2}} \int_{0}^{L} dx$$
$$= AL(1 - \frac{1}{\beta^{2} n^{2}})$$

200 cm active length, 80% of vendor's QE

Mirror Installation

Overlap with beveled edges

PMTS

Tuning

Green laser illuminating whole of acceptance

Red pencil laser probing range of angles

Materials in path of electron

Materials in path of electron in NGC Cerenkov										
ltem	Material	Z	Z Atomic mass densit		RL (g/cm^2)	RL (cm)	Thickness(in)	Thickness (cm)	# RL	Source
Entrance Window^*	Tedlar ((CH2CHCl)n)	Z/A =	0.51201	1.3	25.51	19.63	0.002	0.00508	0.000259	PDG
Gas	Ar	18	39.948	1.66E-03	19.55	1.17E+04		200	0.017036	PDG
	Ne	10	20.18	8.39E-04	28.93	3.45E+04		200	0.005797	PDG
Glass	SiO2			2.2	27.05	12.29		0.3	0.024410	PDG
Exit Window	Tedlar ((CH2CHCl)n)	Z/A =	0.51201	1.3	25.51	19.63	0.002	0.00508	0.000259	PDG
								argon)	0.042	
*See http://pdg.lbl.gov/2014/AtomicNuclearProperties/HTML/polyvinylchloride_PVC.html							Percent from r	nirror	58.2	

Magnetic Field at PMTs

Detector Efficiency

We can assume that the photoelectrons have a Poisson distribution $W(N,\bar{N}) = \frac{\bar{N}^N e^{-\bar{N}}}{N!}$ for registering N photoelectrons when \bar{N} are expected. If by P(N) we denote the probability for the detector (PMT and associated circuitry) to record the pulses due to N photoelectrons, we can write the efficiency of the detector as $\epsilon = \sum_{N=0}^{\infty} W(N,\bar{N})P(N)$. Let us assume that P(N) is of the form $P(N') = \begin{cases} O, & N' \leq N-1; \\ 1, & N' \geq N. \end{cases}$ i.e.: there is a threshold for the detection of N photoelectrons. Then the efficiency is of the form

$$\varepsilon = 1 - e^{-\bar{N}} \left(1 + \sum_{N'=1}^{N-1} \frac{\bar{N}^{N'}}{N'!} \right)$$

Hence, we have the efficiency functions

$$\epsilon_3 = 1 - e^{-\bar{N}}(1 + \bar{N} + \bar{N}^2/2),$$
 92%

$$\epsilon_4 = 1 - e^{-N} (1 + \bar{N} + \bar{N}^2 / 2 + \bar{N}^3 / 6),$$
 100%
etc.

Cerenkov cut
Calorimeter cut

Figure 31: First plot: HMS calorimeter total energy hcal_et/E' distribution when number of photoelectrons are higher than 0 but less than 2. Second plot: The Čerenkov cut efficiency as a function of scattered energy.

Rosen07 R_{N} π/e from .1 to 30

Electrons $N_{pe} > 2$, ShrTrk > 0.7

Figure 32: HMS central momentum is 0.71 GeV. Top plot: HMS calorimeter track energy E_{track}/E' (hsshtrk/hse) distribution without Čerenkov cut (the blue line) and with Čerenkov cut > 2 (the red line). Bottom plot: The E_{track}/E' distribution after Čerenkov cut > 2 and $E_{track}/E' > 0.7$ cut (the red hatched area). The solid blue area is the pion contamination.

NGC Gas System

- Ar/Ne mixed using its own MFC system in gas shed
- Very similar to wire chamber gas system
 - •1 atm, slow flow rate to maintain gas mix purity
- Initial fill done using high-flow circuit (~100 scfh)
 - switch to low-flow circuit to maintain (~60 sccm)
- System protected against overpressure by pop-off valves, multiple overpressure/relief bubblers, and automated valve attached to Photohelic switch/ gauge
- Gas flows electronically monitored and logged

Backup & Status

- Two HMS mirrors
- Three NGC mirrors
- Four 5 inch Hamamatsu UV glass (suitable for coating)
- One 5 inch ET Quartz tube
- Huge inventory of experience
- Assembled and tuned detector in ESB with nitrogen flowing since October 2015
- Ready for installation and checkout

Acknowledgements

- Howard Fenker
- Brad Sawatsky
- Bert Metzger
- Vahe Mamyan
- Nicholas Philips
- Mikhail Yurov
- Steve Greco
- Dagmawi Abede
- David Wimer
- Garth Huber
- Dan Abrams
- Jixie Zhang

- Dien Nguyen
- Matt Caplan
- Tyler Cody
- Matt Biondi
- Thomas Schneider
- Tosh Rijal
- Thanakorn Iamsasri
- Cole Smith
- Matthew Nelson
- Melissa Goldman
- Stephen Washington

https://hallcweb.jlab.org/doc-private/ShowDocument?docid=794

Extra Slides

Faro Arm in Astronomy at UVa

Coordinate measuring machines (CMM)

APEX Metrology, Zeiss G2 Calypso

Mirrors – the glass

We worked with Rayotek of San Diego which claimed great experience in slumping glass.

They were 1 year late – the shapes were very good. We specified R = 135cm

Rating		1	2	3	4	5	6	7	8	9	10
Mirror #	ŧ	12	0	8	10	5	7	4	6	9	11
radius, cm	Ζ	132.9	133.2	133.2	133.4	133.3	134.1	133.2	133.3	133.0	135.7
	0	132.6	132.6	132.6	132.6	132.6	133.5	132.6	132.6	132.0	134.9
	Α	133.1	133.9	133.4	133.5	133.4	134.5	135.9	133.3	134.1	137.5
	В	133.3	133.1	133.1	135.3	132.7	134.4	133.7	135.0	133.7	136.3
	С	133.0	133.1	135.3	135.0	137.1	133.9	133.5	133.2	133.3	135.5
	D	134.0	135.6	133.1	133.3	134.3	136.1	133.9	134.6	134.8	134.6
	Ζ	-198.5	-295	-309	-348	-516	-225.2	-450.3	-244.0	-674	-738
	0	-17.8	-13	-15	-19	-12	-32.1	-14.6	-23.5	-32	-58
dev_min,	Α	-85.8	-91	-60	-78	-66	-128.5	-297.7	-170.5	-106	-501
um	В	-34.4	-17	-69	-197	-9	-38.0	-182.7	-190.1	-180	-325
	С	-19.8	-92	-174	-211	-326	-105.7	-69.1	-75.5	-37	-100
	D	-184.8	-207	-90	-75	-97	-120.7	-96.0	-224.2	-663	-96
	Z	78.8	70	179	132	129	114.5	100.4	119.1	91	550
	0	17.1	15	12	18	10	18.2	10.6	15.7	26	20
dev_max, um	Α	28.6	47	42	45	37	99.6	126.7	88.0	67	329
	В	23.2	8	100	86	10	78.5	39.4	72.9	37	438
	С	22.7	37	135	112	183	61.0	34.5	30.5	46	103
	D	60.8	125	39	47	68	40.3	40.0	163.6	64	182
	·										
dev_sig, um	Z	23.5	40	50	48	64	32.8	49.4	38.1	47	103
	0	7.3	6	4	8	4	9.8	4.1	6.5	11	13
	Α	14.5	25	20	20	17	29.8	67.5	35.2	27	113
	В	7.3	4	18	43	3	12.3	19.2	39.9	14	76
	С	6.6	18	58	55	90	15.1	16.2	16.7	17	30
	D	23.0	56	10	11	29	16.8	22.4	38.6	51	27

Conical Fit - Data

-60

-80

¹⁵ У (с¹⁰ М)

Red line is laser pointer path for PMT position tuning

Ê

x (cm)

Elliptical Fit - Data

Conical Fit - Data

MC produced electron vertical and horizontal angles as a function of X and Y at the front of the NGC window.

