Development of a Polarized ³He Beam Source for RHIC with EBIS

J. Maxwell

for the BNL-MIT Polarized He3 Ion Source Collaboration

Laboratory for Nuclear Science

PSTP 2013, Charlottesville, VA September 12th, 2013

Outline

- Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects
- Q Gas Transfer Test Design Magnetic Shielding Test Polarization System Transfer Path
- 3 Current Progress New Discharge Polarimeter MIT Lab Setup

Outline

- Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects
- Q Gas Transfer Test Design Magnetic Shielding Test Polarization System Transfer Path
- 3 Current Progress New Discharge Polarimeter MIT Lab Setup

Why a Polarized Helium 3 Source?

- Polarized DIS crucial for study of nucleon spin structure
 - Measurements of PPDFs; tests of QCD, Bjorken sum rule; exploration at higher energies
- Targets have proton and neutron surrogates (H, D, ³He)
- Polarized neutron beam for polarized DIS needed as an Electron Ion Collider becomes new focus
 - Deuterium has small magnetic moment: tough
 - ³He has a magnetic moment close to the free neutron, will work with RHIC spin manipulation
- Polarized ³He ions offer a polarized neutron beam for RHIC and a future eRHIC
- Workshop on Opportunities for Polarized He-3 in RHIC and EIC (2011)

History of ³He Ion Sources

- Rice University, 1969: MEOP for ³He⁺
 - 16 keV, 8 particle μ A at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for ³He⁺⁺
 - 29 keV, 50 particle μA at 65% polarization
- Laval University, 1980: Stern-Gerlach for ³He⁺
 - 12 keV, 100 particle nA at 95% polarization

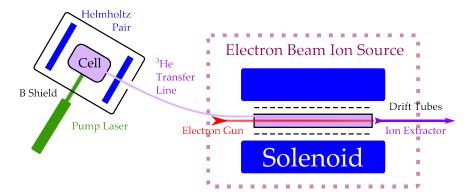
Our Proposal¹

- RHIC's Electron Beam Ion Source Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize ³He⁺⁺ for injection

¹A. Zelenski, J. Alessi, ICFA Newsletter (2003).

History of ³He Ion Sources

- Rice University, 1969: MEOP for ³He⁺
 - 16 keV, 8 particle μ A at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for ³He⁺⁺
 - 29 keV, 50 particle μ A at 65% polarization
- Laval University, 1980: Stern-Gerlach for ³He⁺
 - 12 keV, 100 particle nA at 95% polarization

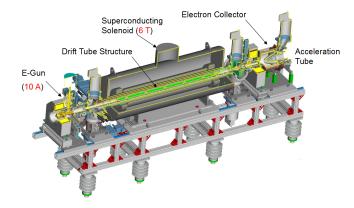

Our Proposal¹

- RHIC's Electron Beam Ion Source Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize ³He⁺⁺ for injection

¹A. Zelenski, J. Alessi, ICFA Newsletter (2003).

Source Design Goals

- Polarize to \sim 70% at 30 G & 1 torr with 10 W laser
- Transfer $\sim 10^{-14}$ ³He/s to EBIS at 5 T & 10^{-7} torr
- Deliver 1.5×10^{11} 3 He $^{++}$ ions per 20 μ sec pulse



RHIC's Electron Beam Ion Source

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

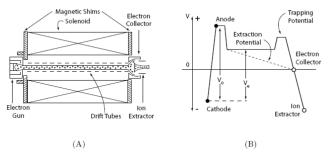
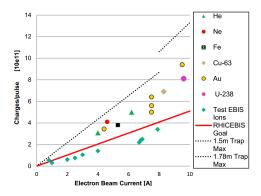



Figure 4. (A) A schematic of the EBIS course. (B) The electric potential along the axis of the source

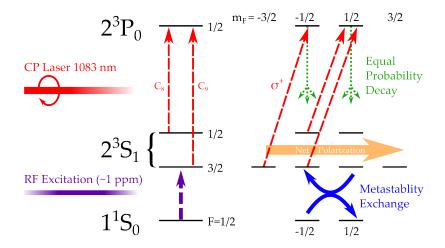
RHIC's EBIS Performance

- EBIS has provided He^{2+} , Ne^{5+} , Ar^{10+} , Fe^{20+} , and Ti^{18+} for NASA's SRL
- For RHIC run supplied U³⁹⁺, and both Au³²⁺ and Cu¹¹⁺ with rapid switching²
- Capable of ${}^{3}\text{He} \Rightarrow {}^{3}\text{He}^{++}$ at nearly 100%

²Alessi, Beebe, Pikin: BNL-94248-2011-CP and BNL-98867-2013-CP

³He Polarization

- EBIS has done much of the work for us!
- Need polarized ³He; pure sample for injection
- Revisit MEOP technique³ with modern lasers


Metastability Exchange Optical Pumping

- Mature technique: polarized targets, medical imaging⁴
- Laser technological advances give 10 W @ 1083 nm easily
- Polarize at pprox 1 torr, pprox 30 G (Higher possible)
- Pure ³He sample, faster than SEOP

³Colegrove et al, Phys. Rev. 132 (1963).

⁴Kauczor et al. JMRI, 7 (1997).

MEOP Mechanism

Depolarization Contributions

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+} + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++} + {}^{3}\text{He}^{+}$
 - Recombination: $e^-+{}^3{\rm He}^{++} \rightarrow {}^3{\rm He}^+$
 - Spin Exchange from Beam

Depolarization Contributions

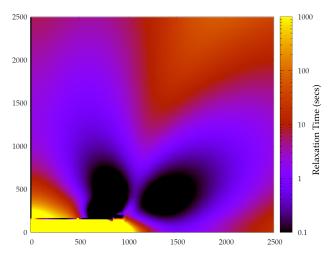
- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+} + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++} + {}^{3}\text{He}^{+}$
 - Recombination: $e^- + {}^3{\rm He}^{++} \rightarrow {}^3{\rm He}^+$
 - Spin Exchange from Beam

Depolarization Contributions

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+} + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++} + {}^{3}\text{He}^{+}$
 - Recombination: $e^-+^3\text{He}^{++} \rightarrow ^3\text{He}^+$
 - Spin Exchange from Beam

Depolarization from Field Gradients

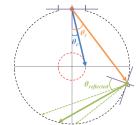
From Schearer⁵, we have:

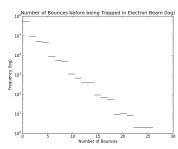

$$\frac{1}{\tau} = \frac{2}{3} \frac{|\Delta B_t|^2}{|B_l|^2} \langle v^2 \rangle \frac{\tau_c}{\omega_0^2 \tau_c^2 + 1}$$

- Transverse gradient ΔB_t
- Holding field B_l
- Velocity v
- ullet Average time between collisions au_c
- Resonant frequency ω_0

We can map regions of stray field which should be problematic, but a full-scale test of the source with test solenoid is planned.

⁵Schearer, Walters, Phys. Rev. 139(5A) (1965).


Relaxation Time in EBIS B field



• Avoiding dark spots will minimize spin relaxation

Depolarization After Entering EBIS

- Simulation by E. Mace
- Number of Bounces before:
 - Trapped
 - Absorbed in wall
 - Exit cylinder
- No particles bounces more than 35 times
- Expect 10³ bounces before depolarization

Polarimetry

- Gas Polarization Measurements
 - RF discharge polarimeter⁶: Low P, Low B
 - Probe laser absorption polarimeter⁷: Wide range of P, B
 - NMR: calibration with water cell
- After Extraction (10-20 keV)
 - Lamb-shift polarimeter⁸
- After RFQ and Linac (\sim 6 MeV)
 - ³He–C Foil⁹, calibration using:
 - ³He–⁴He polarized elastic scattering¹⁰

```
<sup>6</sup>Pavlovic, Laloe, J. Phys, (Paris), 1970.
```

⁷Courtade et al, Eur. Phys. J. D 21 (2002).

⁸Pliss, Soroko, Nuc. Inst. Meth. (1976).

⁹Wissink et al Phys Rev C (1992).

¹⁰Plattner, Bacher, Phys. Letters (1971).

Outline

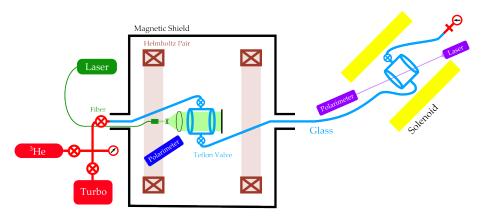
- Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects
- Q Gas Transfer Test Design Magnetic Shielding Test Polarization System Transfer Path
- 3 Current Progress New Discharge Polarimeter MIT Lab Setup

Polarization and Relaxation Test

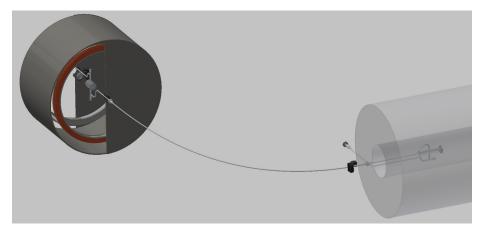
- What polarization relaxation do we expect during transfer from pumping cell, through stray field, to EBIS?
- Perform gas transfer to test solenoid following same route
 - But: Polarization measurement at 10^{-7} torr is difficult

Polarization Relaxation in Transfer at 1 torr

- Pumping cell and test cell at same pressure, gas exchange via diffusion (worse depolarization than molecular flow)
- Estimate polarization in test cell from discharge polarimetry in pumping cell, observing rates of relaxation
- Secondary polarization measurement in test cell with optical probe and electrical discharge


Polarization and Relaxation Test

- What polarization relaxation do we expect during transfer from pumping cell, through stray field, to EBIS?
- Perform gas transfer to test solenoid following same route
 - But: Polarization measurement at 10^{-7} torr is difficult

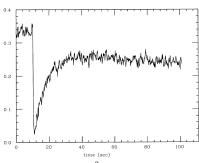

Polarization Relaxation in Transfer at 1 torr

- Pumping cell and test cell at same pressure, gas exchange via diffusion (worse depolarization than molecular flow)
- Estimate polarization in test cell from discharge polarimetry in pumping cell, observing rates of relaxation
- Secondary polarization measurement in test cell with optical probe and electrical discharge

Testing Depolarization in Transfer to EBIS

Testing Depolarization in Transfer to EBIS

³He Depolarization Transfer Test Setup

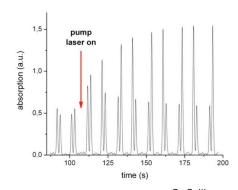

- Allows simple test of quantities we need to study
 - Polarization performance in shielded pumping cell
 - Relaxation in transfer into and inside solenoid
- Works if diffusion time is shorter than relaxation time

Relaxation rate measurements from pumping cell:

- Discharge off, pumping off
- Discharge on, pumping off
- Polarization destroyed with transverse field →

Direct measurements:

 Discharge on in test cell, optical probe laser



C.E. Jones et al. ³ He(e,e') Quasielastic Asymmetry, Phys. Rev. C. 47 (1993).

Optical Probe Polarimetry

Possible secondary polarization measurement for solenoid cell.

- Optical absorption technique^{11,12} good at high field
- Sweep probe laser through two 2³S-2³P transitions
- For common spin temperature $1/\beta$ between metastable and ground state atoms: $P = \frac{e^{\beta}-1}{e^{\beta}+1}$
- β can be deduced from ratio of absorption signals

G. Collier

¹¹Courtade et al, Eur. Phys. J. D 21 (2002).

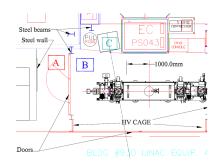
¹²Suchanek et al, Eur. Phys. Special Topics 144 (2007).

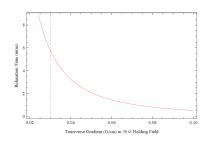
Optical Probe Polarimetry

Possible secondary polarization measurement for solenoid cell.

Optical absorption technique^{11,12} good at high field

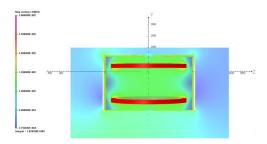
Technique Benefits

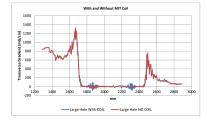

- No calibration required
- Can be performed at high, static B field
- High accuracy, signal-to-noise

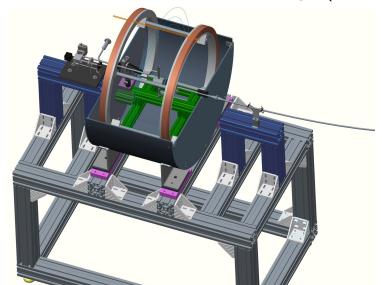

¹¹Courtade et al, Eur. Phys. J. D 21 (2002).

¹²Suchanek et al, Eur. Phys. Special Topics 144 (2007).

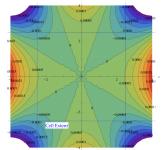
Polarizing in Stray Field


- Potential sites for our polarizer reside within the solenoid's 10 G line
- Stray field gradients unsuitable for longer time scales needed to polarize
- In region of polarizing cell, correction necessary: correcting coil, or shield and additional magnet
- Aim for better than 0.03 G/cm in our 30 G holding field




Magnetic Shielding for Pumping Cell

- Soft steel magnetic shield designed by Brookhaven collaborators (Gu, Pikin)
- Simulated in Opera
- Settled on 1/4 inch thick soft steel cylindrical shell
- 3 cm clearance around Helmholtz coils
- Better than 10^{-4} field uniformity in cell region
- Tested several extensions to reduce gradients as transfer line exits shielding

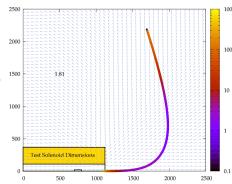

Magnetic Shield and Test Stand Design (Farrell)

Helmholtz Pair Magnet

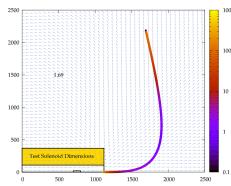
- Weak magnetic field needed
- Uniformity better than 10⁻⁴ to ensure long relaxation time in pumping cell
- Open access for discharge polarimeter, flexibility
- 30 G, 30 cm Helmholtz pair chosen

Glass Design

- Pumping cell inside shielding
- Test cell inside 5 T solenoid, longer path for absorption probe polarimeter
- $100 \, \text{cm}^3 \gg \text{transfer line 4 mm ID}$

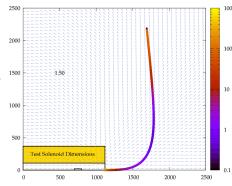


Transfer Path Relaxation Studies


- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs

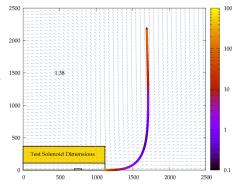
(Color scale in seconds)

Transfer Path Relaxation Studies


- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs

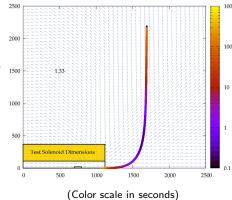
(Color scale in seconds)

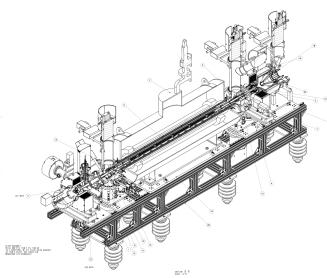
Transfer Path Relaxation Studies


- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs

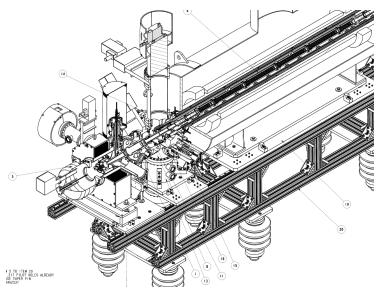
(Color scale in seconds)

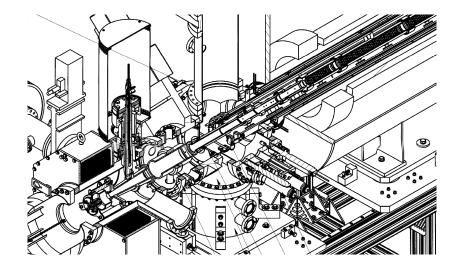
Transfer Path Relaxation Studies


- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs


(Color scale in seconds)

Transfer Path Relaxation Studies


- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between 2500 relaxation time and transfer length to pick next step in path 2000
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs


Constraints on Path into EBIS

Constraints on Path into EBIS

Constraints on Path into EBIS

Outline

- 1 Source Design
 Electron Beam Ion Source
 MEOP ³He Polarization
 Depolarization Effects
- Q Gas Transfer Test Design Magnetic Shielding Test Polarization System Transfer Path
- 3 Current Progress New Discharge Polarimeter MIT Lab Setup

Liquid Crystal Based Discharge Polarimeter

- Nuclear polarization proportional to circular polarization of 668 nm discharge light¹³
 - Historically measured via light intensity with linear polarizer, rotating 1/4 wave plate. For angle off axis θ_m :

$$M_c = \frac{1}{2\cos\theta_m} \frac{\text{AC amplitide}}{\text{DC offset}}$$

- Advent of nematic liquid crystals offer variable wave plates for light polarimetry¹⁴ with msec switching times
 - Obviates need for noisy motor and lock-in amplifier
 - Directly observe 1/4, 3/4 wave plate intensities

$$M_c = \frac{1}{\cos \theta_m} \frac{I_{3/4} - I_{1/4}}{I_{3/4} + I_{1/4}}$$

¹³Lorenzon et al, Phys Rev A (1993).

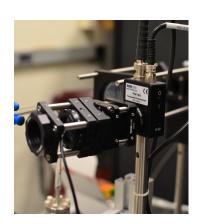
¹⁴Bueno, J. Opt. A, 2000.

Liquid Crystal Based Discharge Polarimeter

- Nuclear polarization proportional to circular polarization of 668 nm discharge light¹³
 - Historically measured via light intensity with linear polarizer, rotating 1/4 wave plate. For angle off axis θ_m :

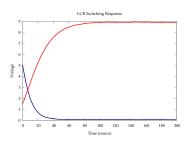
$$M_c = \frac{1}{2\cos\theta_m} \frac{\text{AC amplitide}}{\text{DC offset}}$$

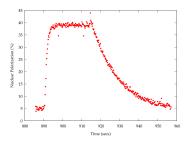
- Advent of nematic liquid crystals offer variable wave plates for light polarimetry¹⁴ with msec switching times
 - · Obviates need for noisy motor and lock-in amplifier
 - Directly observe 1/4, 3/4 wave plate intensities


$$M_c = \frac{1}{\cos \theta_m} \frac{I_{3/4} - I_{1/4}}{I_{3/4} + I_{1/4}}$$

¹³Lorenzon et al, Phys Rev A (1993).

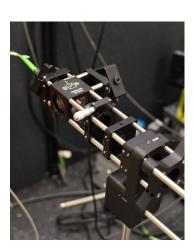
¹⁴Bueno, J. Opt. A. 2000.


Polarimeter Design from Off-the-shelf Parts


- LCR with voltage controller (2 kHz)
- Linear polarizer
- Bandpass filters (10 W of laser light to avoid)
- Rotation mounts for alignment
- Photodiode
 - Extreme sensitivity for discharge light after loss to filters
 - Femtowatt photoreceiver eventually selected
 - Si based photodiode with very high gain and low noise, sacrificing bandwidth (20 Hz)

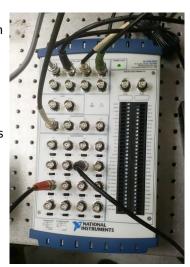
Polarimeter Performance

- Must subtract small offsets due to ambient light, laser light (sub 1%)
- Time resolution of measurement dependent on LCR switching time
 - Typically 110 msec to switch down to 1/4 wave
 - 60 msec to switch to up to 3/4 wave
- Measures several times a second
- "Warm-up" time, after which voltage calibration should be redone
- Working to tighten error, which is mostly from electronic noise

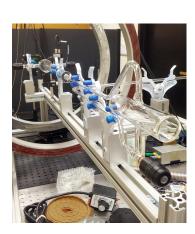


- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner

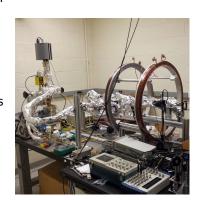
- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner

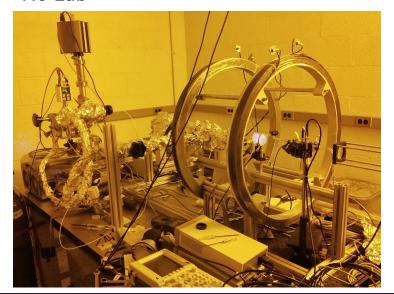

- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner

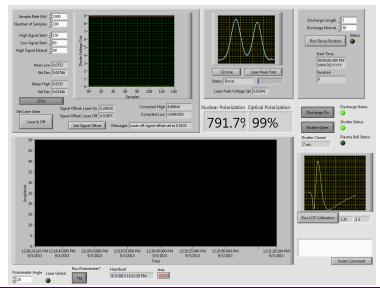
- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - · Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner

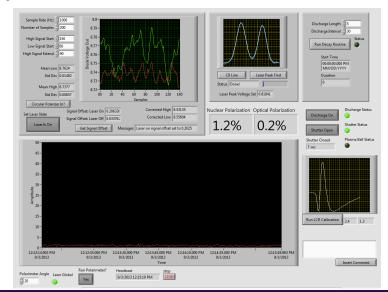

- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner

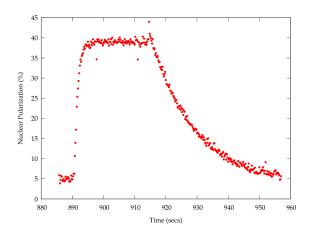
- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - · Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner


- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner


- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - · Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner


- Keopsys 10 W, 1083 nm fiber laser
 - Circularly polarizing, beam expansion
- 30 cm Helmholtz coil magnet
 - 30 G at 16.5 A
 - Independently powered coils
- Agilent 250 l/s compact turbopump
 - · Instrutech ion and convection gauges
 - Inficon RGA
- NI USB-6259 BNC
- Discharge polarmeter (Thorlabs)
- Custom glassware (Finkenbeiner)
- Bake-out with heat tape, Omega thermocouple scanner


MIT ³He Lab


DAQ Software

DAQ Software

First Polarization Results

- New sealed cell, no getters, moderate bake-out
- 2s build-up, 20s relaxation time (discharge on)

Looking forward

- Polarizing in the lab: plenty of power, we now need purity.
- Plan to move polarizer to Brookhaven in the next couple months to start depolarization tests.
- Spare EBIS solenoid undergoing minor refurbishment, will become available in this timeframe.
- Hope to finish initial depolarization in transfer tests by end of year.
- Next: Transfer into and ionization in EBIS.
 - Polarization measurement after extraction: Lamb-shift? He3–He4 elastic scattering?

BNL-MIT Pol He3 Source Collaboration:

- Brookhaven National Laboratory
 - J. Alessi, E. Beebe, J. Farrell,
 A. Pikin, J. Ritter, A. Zelenski
- MIT Laboratory for Nuclear Science
 - C. Epstein, E. Mace, J. Maxwell,
 R. Milner
 - P. Binns, P. Goodwin, E. Ihloff,
 B. O'Rourke, C. Vidal

We gratefully acknowledge the advice of

• G. Collier, A. Kraft, J. Pierce

Work supported by

- DOE Office of Nuclear Physics, R&D for Next Generation Nuclear Physics Accelerator Facilities
- MIT Department of Physics

Thanks for your attention!