Investigation into Polarization Uncertainty Minimization of Solid Polarized Targets

Dustin Keller

September 9, 2013

Table of contents

1 Introduction

- Solid Polarized Target Experiments
- Uncertainty Minimization
- Material
- 2 Polarized Target Data Analysis
 - The NMR system
- 3 TE Polarization Uncertainties
 - Cumulative Signal Uncertainties
- **4** Calibration Uncertainty Minimization
 - Calibration
 - Final Polarization Uncertainty
- **5** Uncertainty in Tensor Polarization
 - Tensor Polarization
 - Tensor Polarization Enhancement

Conclusion

Solid Polarized Target Experiments

Solid Polarized Target

- (A) ~100 nA
- (B) 10³⁵ cm⁻² s⁻¹
- (C) dilution factor f<50%

- DNP using Microwave Stronge B-Field
- Cryogenic System (1.5-0.03 K)
- Materials Specific to Experiment
- NMR (Yale/Q-meter)
- Proton/Deuteron

Dustin Keller (UVA)

PSTP 2013

Relevant Experiments

- E93-026(Gen01), E01-006(RSS), E06-014(d2n), E07-003(SANE), E08-027(G2P), E08-007(Gep), (FROST)
- E143, E155, E155x
- Upcoming: E12-13-011(b1), E12-07-107, E12-09-009, E12-06-109, E12-09-007, E12-11-108(solid), (HiFROST, DY)

The Need for Error Reduction

- Polarization Observables for Kinematic Range
- Largest Error in Asymmetry Measurement
- Pushing Frontier on Precision

Material Performance

Errors from Material

- (A) Density Variation (Multiple Stresses)
- (B) Tolerate High Intensity Beam
- (C) Homogeneity
- Optimal Irradiation (Field/Experiment)

Quantify Characteristics

- Maximum Polarization
- Ollution Factor
- Material Performance
- Spin-Lattic Relaxation
- m = 0 Cross Relaxation

Material Performance

Analysis General Approach

- TE Events Selection
- Quality of Baseline
- Reintegration of Signle
- Extract Calibration Constant
- Extract Enhanced Area
- Errors from Each Contribution

Resolving/Reintegration TE Signal

- **Q** Baseline/background Subtraction Quality Baseline and Fit
- Integrate Area Riemann Sum

Uncertainty in NMR polarization

Complete Set of Contributions

$$\frac{\delta P_E}{P_E} = \left[\left(\frac{\delta P_{TE}}{P_{TE}} \right)^2 + \left(\frac{\delta A_{TE}}{A_{TE}} \right)^2 + \left(\frac{\delta S_{TE}}{S_{TE}} \right)^2 + \left(\frac{\delta A_E}{A_E} \right)^2 + \left(\frac{\delta S_E}{S_E} \right)^2 + \left(\frac{\delta G}{G} \right)^2 \right]^{1/2}$$

A_{TE} - Relative uncertainties in area acquired during TE
 S_{TE} - Measurement limitation during TE
 S_E - Systematic variation in enhanced signal
 G - Error from gain

TE Polarization Uncertainties

$$T = \sum_{i=0}^{9} a_i \left(\frac{\ln p - b}{c}\right)^i$$
$$\delta T = \sum_{i=1}^{8} a_i \left(\frac{\ln p - b}{c}\right)^i \frac{\delta p}{\delta c}$$
$$\delta P_{TE} = \frac{\mu B}{KT} \sqrt{\left(\frac{\delta B}{B}\right)^2 + \left(\frac{\delta T}{T}\right)^2} \operatorname{sech}^2 \left(\frac{\mu B}{KT}\right)^2$$

- (A) Error in Pressure Measurement
- (B) Calibrations
- (C) Tempurature Fluctuations
- (D) Magnet Setability

TE Area Uncertainty

Singal Integration and Errors

- (2) Baseline Subtraction
- (3) Fit Quadratic Around Peak
- (4) BG (DC-vertical offset) Subtraction
- (5) Variation in Area in the χ^2 Min-Steps

- (A) Riemann sum
- (B) Strong Correlation to Polynomial
- (C) On-line Minimization by Centering
- (D) ~2% for TE

Q-meter

- Variation in temperature with output voltage
- Only relevant for data taking (need temp monitor)
- 0 Less then 1% but much smaller with temperature control

Yale Card Characteristics

(1) Actual operative voltage 3 ± 0.3 V

- **2** Input voltage in a function of polarization
- Small effective error $\sim 0.1-0.5\%$

Contributing Uncertainties

(#)	Type	Source	Error $(\%)$
(1)	S_{TE}	ΔT	1.45
(2)	A_{TE}	ΔA_{TE}	1.61
(3)	A_{TE}	ΔA_{fit}	0.75
(4)	S_E	R_B	0.50
(5)	S_E	ΔV_Q	0.75
(6)	S_E	NMR-tune	0.47
(7)	S_E	ΔB_{drift}	0.25
(8)	G	ΔV_{Yale}	0.10
(9)	-	$\Delta \bar{P}_{run}$	0.50

- A_{TE} : Uncertainties in area acquired during TE
- **2** S_{TE} : Measurement Limitation during TE
- \bigcirc S_E: Systematic variation in time of enhanced signal
- O G: Error from conditioning card

TE Fitting Procedure

Systematic Steps to Extract Maximal Information

- (A) Thermalize to TE (fit to get t_1)
- (B) Quantify Thermal Fluctuations (20 min: 2%)
- (C) Set of Constraints area (pressure) data quality
- (D) Maximize area (pressure) data points
- (F) Minimize area (pressure) data Uncertainty

TE Fitting Procedure

Procedural Usability Constraints

TE Usability Criteria

- (1) 2% limit in thermal fluctuations at 1.5 K
- (2) At least 6 points (in flattest region)
- (3) 2-parm: Slope less than 0.0035 area/min (Torr/min)
- I-parm: Increase contiguous points without increasing error (still 'Usable')

Quality Area and Pressure within Procedural Constraints

- (A) Final One Parameter Line Fit for Final Set (Fit Error)
- (B) Compare Initial Set with Final Set (Systematic Error)
- (C) Find δP_{TE} and δA_{TE}
- (D) Add TE errors up and obtain CC

$$\delta T = \sum_{i=1}^{8} a_i \left(\frac{\ln p - b}{c}\right)^i \frac{\delta p}{\delta c}$$
$$\delta P_{TE} = \frac{\mu B}{KT} \sqrt{\left(\frac{\delta B}{B}\right)^2 + \left(\frac{\delta T}{T}\right)^2} \operatorname{sech}^2\left(\frac{\mu B}{KT}\right)$$

Variation in Calibration Constant

- - CC set and uncertainty
- - Showing top (open) and bottom (closed) cups

• (a) Only CC for 'Usable' TE

- (b) Consecutively Used Material (Undisturbed between TE)
- (c) Each within Error Bars (1σ)
- Final Fit Leads to Error Reduction $(3\% \rightarrow 2.4\%)$

- (a) Charge Average For Each Run
- (b) Error In Charge Average
- (c) Set Quality Constraint $\Delta \bar{P}_{run}/\bar{P}_{run} < 0.5\%$

Final Polarization Uncertainty

Uncertainty by CC and Run

Run Range	Arm	Cup	CTE
3061-3070	Left	т	- 1.299 (3.05%)
3071-3084	Left	В	- 1.371 (3.76%)
3085-3130	Left	Т	- 1.299 (3.05%)
4599-4695	Left	В	- 1.823 (3.01%)
5339-5344	Left	Т	- 1.424 (2.87%)
5345-5346	Left	В	- 1.799 (3.28%)
5347-5484	Left	В	- 1.731 (3.18%)
22146-22155	Right	т	- 1.299 (3.05%)
22156-22172	Right	В	- 1.371 (3.76%)
22173-22217	Right	Т	- 1.299 (3.05%)
23540-23618	Right	В	- 1.823 (3.01%)
24113-24118	Right	т	- 1.424 (2.87%)
24120-24121	Right	В	- 1.799 (3.28%)
24122-24258	Right	В	- 1.731 (3.18%)

- (4) Magnetoresistance (R_B)
- (5) Q-meter Temp (ΔV_Q)
- (6) NMR Tune Drift (NMR-tune)
- (7) B-field Drift (ΔB_{drift})
- (8) Gain Error (ΔV_{Yale})
- (9) Charge Average $(\Delta \bar{P}_{run})$

- (A) Proton (NH₃) ~3-4%
- (B) Deuteron (ND₃) ~4-5%

Summary of Offline Uncertainty Minimization

- (A) Collect Instrumental, Systematic, Statistical
- (B) Fit Area and Pressure (max points/min error)
- (C) Set Usability Criteria on TE points
- (D) Set Quality Constraints on CC
- (E) Fit Calibration Constant
- (F) Add in Time Dependant Effects

Summary of Online Uncertainty Minimization

- (A) Center TE Signal Before TE
- (B) No B-field Drifts
- (C) Q-meter Temperature
- (D) Multiple TE per Set

Tensor Polarization Measurement

$$P = \frac{n_{+} - n_{-}}{n_{+} + n_{-} + n_{0}} \quad (-1 < P_{z} < 1)$$

$$P_{zz} = \frac{n_+ - 2n_0 + n_-}{n_+ + n_- + n_0} \quad (-2 < P_{zz} < 1)$$

(A) positive and negative(B) negative and unpolarized(C) positive and unpolarized

- (a) b_1, A_{zz}
- (b) T_{20}, T_{21}, T_{22}
- (c) photo/electro disintegration
- (d) photoproduction

Spin-1 Polarization

- Solid Polarized Target (ND₃):
 - \checkmark Standard Polarized Target
 - ✗ Standard Field 5T Strength P_{zz} =10%

Measurement from Area

- Previous Steps for TE
- Calibration Constant
- Min Inst Error (Cold NMR)
- Additional Ratio Fit
- ~ 4

Spin-1 Polarization

$$P = \frac{n_+ - n_-}{n_+ + n_- + n_0}$$

Measurement from Ratio

$$P = (r^2 - 1)/(r^2 + r + 1)$$

Assume Boltzmann Distribution

•
$$E_0 \Leftrightarrow E_1, \Delta E_+ = E_0 - E_1, I_+$$

•
$$E_{-1} \Leftrightarrow E_0, \ \Delta E_- = E_{-1} - E_0, \ I_-$$

- $r^2 = I_+/I_- = n_+/n_-$
- $r \approx n_0/n_-$

Tensor Polarization Measurement

$$P = \frac{n_{+} - n_{-}}{n_{+} + n_{-} + n_{0}}$$

Measurement from Fits

$$P = (r^2 - 1)/(r^2 + r + 1)$$

Assume Boltzmann Distribution

•
$$E_0 \Leftrightarrow E_1, \Delta E_+ = E_0 - E_1, I_+$$

• $E_{-1} \Leftrightarrow E_0, \Delta E_- = E_{-1} - E_0, I_-$
• $r = I_+/I_- = n_+/n_-$

Tensor Polarization Measurement

$$P_{zz} = \frac{n_+ - 2n_0 + n_-}{n_+ + n_- + n_0}$$

Measurement from Fits

$$P = (r^2 - 1)/(r^2 + r + 1)$$
$$P_{zz} = (r^2 - 2r + 1)/(r^2 + r + 1)$$

Uncertainties

- For r = 2.5~(P = 50%) ~same for fixed δr
- $\delta P_{zz}/P_{zz} \sim 7.5\%$ Vector Enhanced
- $4\% \leq \delta P_{zz} \leq 12\%$ Tensor Enhanced

RF Modulation

$$H = \omega_{0s}S_z + 2\omega_{1s}S_x \cos\omega t + \omega_{2s}S_z kf(\phi, t)$$

$$P_{zz} = \frac{n_+ - 2n_0 + n_-}{n_+ + n_- + n_0}$$

Measurement Capacity

RF Modulation

Deuteron RF Modulation (center 32.7 MHz):

- 0 32.6-32.65 MHz pedestal
- 32.76 MHz peak
- 3 24 kHz modulation
- 10000 Steps/Second
- **(3)** Triangle Waveform

Optimization Research

Modulation Optimization For Experimental Use
 Sustain and Measure with an NMR System
 Measurement Method and Uncertainty Minimization
 Relaxation Rate in Various Tensor Enhanced Modes (temp dep)

RF Modulation

Deuteron RF Modulation

First Look

- Secondary Coil (2 mT/A)
- 2 Translate NMR Area
- Only Estimates
- Intermittent NMR

Enhanced Tensor Polarization Measurement

Enhancement Method

$$P_{zz} = (r^2 - 2r + 1)/(r^2 + r + 1)$$

$$P_{zz} = \frac{n_{\pm}^i + dn_0 - 2(n_0^i - dn_0)}{N} = P_{zz}^i + f(A^i, A^f, r)$$

$$P_{zz} = \frac{|\Delta IP|}{I_+ + I_-} \Delta \nu_{rf} - \delta a$$

$$P_{zz} = 1 - 3\frac{n_0}{N} = C(I_+ - I_-)$$

Error Estimates

- (a) Natural distribution (4%)
- (b) RF Saturation (9-12%)
- (c) Proton RF (4-6%)

Uncertainty Minimization

- (a) Systematic Minimization Procedure
- (b) Quality Constraints
- (c) Linear Hypothesis Fitting
- (d) Account for all errors (1 TE)

Uncertainty in Tensor Polarization

- (a) Measurement Capacity
- (b) Uncertainty Large But Real (Set a Range)
- (c) Tests to Come