

RUB

# PSTP 2013 INTERNATIONAL WORKSHOP September 9 – 13, 2013

Recent research activities and results of the Bochum/Bonn Polarized Target Group

# **G. Reicherz**

The 2013 International Workshop on Polarized Sources, Targets & Polarimetry



### Content



- Introduction
- Bonn Frozen Spin Target
- Internal magnet development
- t<sub>1e</sub> measurements
- Material progress
- Bochum NMR box
- Summary

## Introduction

Focus : Study of the nucleon resonance region (baryon spectroscopy) at ELSA by measuring single and double polarization observables

Polarized beam + polarized target +  $4\pi$  detection system

#### Structure mapping at ELSA

Model independent partial wave analysis
 Complete experiment

| Photon      |              | Target |      |      |  |
|-------------|--------------|--------|------|------|--|
|             |              | х      | У    | Z    |  |
| unpolarized | σ            | 0      | Т    | 0    |  |
| linearly    | <b>(</b> -Σ) | Н      | (-P) | (-G) |  |
| circularly  | 0            | F      | 0    | (-E) |  |



$$\frac{d\sigma}{d\Omega}(\Theta,\phi) = \frac{d\sigma}{d\Omega}(\Theta) \cdot \left[1 - p_{\gamma}^{lin}\Sigma(\Theta)\cos(2\phi) + p_{\gamma}^{circ}F(\Theta)\right) + p_{\tau}^{x} \cdot \left(-p_{\gamma}^{lin}H(\Theta)\sin(2\phi) + p_{\gamma}^{circ}F(\Theta)\right) - p_{t}^{y} \cdot \left(+p_{\gamma}^{lin}P(\Theta)\cos(2\phi) - T(\Theta)\right) - p_{t}^{z} \cdot \left(-p_{\gamma}^{lin}G(\Theta)\sin(2\phi) + p_{\gamma}^{circ}E(\Theta)\right)\right]$$

## **Bonn Frozen Spin Target**

 $\Rightarrow$  Frozen spin target + internal holding coil



Polarizing mode DNP 'continuous mode'  $P_{D/p} \sim 80 - 90 \%$ 

Horizontal dilution refrigerator (T  $\leq$  50 mK) with internal 'longitudinal' or transversal holding coil (B<sub>T/L</sub> ~ 0.5 T -1 T)

Data taking (frozen spin) mode  $\tau \sim 300 - 1000 \text{ h}$ 



 $\Rightarrow$  Large angular acceptance (0.98\*4 $\pi$ )  $\rightarrow$  complex handling (moving) system

## **Bonn Frozen Spin Target**

 $\Rightarrow$  Frozen spin target + internal holding coil

Frozen spin technique limitations:

- Large acceptance target system requires dedicated railway system
- $FoM = \sigma n_T f^2 \bar{P}^2$



Combine advantage of the frozen spin technique with the advantage of a continuous polarization



 $4\pi$  – continuous mode target with internal polarizing magnet

## Internal magnet development

Idea: reduce the magnetic volume of the large external pol. magnet to the size/dimensions of the internal holding coil
Field strength: ~ 2.5 T
> as thin as possible (minimized absorption) ~ 2 mm

 $\blacktriangleright$  homogeneity dB/B  $\leq 10^{-3}$ 

$$B = \mu_0 \cdot N \cdot \frac{I}{l}$$

NC: ampere-turn : N·I ~ 300 kA  $\rightarrow$  superconducting wire necessary High current operation (~100 A) in a dilution refrigerator

Gerhard Reicherz | PSTP 2013 INTERNATIONAL WORKSHOP | Charlottesville | 09. – 13. September 2013

## Internal magnet development



Depending on material and radical a homogeneity  $< 10^{-3}$  is needed



#### DNP requires separation of the nucleon spin levels

Gerhard Reicherz | PSTP 2013 INTERNATIONAL WORKSHOP | Charlottesville | 09. – 13. September 2013

# Low-T refrigerator with high current leads Bochum/Bonn

Horizontal dilution refrigerator incl. internal polarizing magnet opt. run as ,frozen spin target'



- A 'continuous mode' operating target with large angular acceptance ( $\sim 4\pi$ ).
- T<sub>min</sub>≈30 mK, T<sub>continuous</sub>≈200 mK @ 100 mW.
- High luminosity L ~  $10^{33}$ /cm<sup>2</sup>s (N  $\approx 10^{10}$ /s).
- High mean polarization.
- Equipped with an internal superconducting polarizing magnet for permanent DNP and high current leads.

# Low-T refrigerator with high current leads Bochum/Bonn



- Construction of the heat exchangers/components nearly completed
- Low temperature heat exchangers under construction at Dubna
- First cold test in short time



# Design of low mass polarizing solenoid $10^{-4} < \Delta B/B < 10^{-3}$ for the new Bonn refrigerator



# Design of low mass polarizing solenoid $10^{-4} < \Delta B/B < 10^{-3}$ for the new Bonn refrigerator



- 6 layers, 0.25F54 1:1.35, 590 wdg.
- 2 corrector notches (2 · 8 windings)
- Thickness 1.8 mm
- High accuracy winding is mandatory



# Design of low mass polarizing solenoid $10^{-4} < \Delta B/B < 10^{-3}$ for the new Bonn refrigerator

corrected solenoid : 'inverse notched coil', B = 2.5T @ 90 A for the new refrigerator



# Prototype production / test of low mass superconducting solenoid for high field Bonn / Mainz

First test coils have been wound in Mainz and Bonn



• High accuracy layer by layer wet winding has been solved (non standard or commercial technique)

- First test coils successfully tested in thermal cycles
- First cold test and field measurements at 4.2K have been done at Mainz / Bonn in short time

# $T_{1e}$ measurements

First moment

$$M_1^{IS} = \frac{1}{3}\mu_0 \langle \xi \rangle \gamma_I \gamma_S S \hbar n_S P_S$$

Shape factor of the sample

$$\langle \xi \rangle = \frac{1}{N_I} \sum_j \xi_j = \frac{1}{N_I} \sum_j \left[ \frac{3}{4\pi n_S} \sum_\mu \frac{1 - 3\cos^2 \theta_{j\mu}}{r_{j\mu}^3} \right]$$

Demagnetization factor

 $\xi = 3D_{zz} - 1$ 

Frequency shift in hertz

$$\Delta f = \frac{\mu_0}{6\pi} \langle \xi \rangle \gamma_I \gamma_S S \hbar n_S \cdot \left( 1 - \frac{\tau_e}{T_{1e}} \right) \tanh\left(\frac{\gamma \hbar B}{2kT}\right)$$





## T<sub>1e</sub> measurements (NEDOR)





$$T_{1e}^{-1}(T) = \frac{1}{T_{1e}^{1K}} \cdot \exp\left(\frac{T - 1K}{\vartheta}\right)$$

4 A = 4.09E5 = 106.2183 MHz f<sub>0</sub> 3.5 Γ<sub>1</sub> = 33.42 kHz  $\Gamma_{G}^{-}$  = 63.09 kHz 3 Amplitude [w. E.] 2.5 2 1.5 0.5 <del>┶╪╪</del>╪╪╪╪╪╪╪╪╪ 0 ++++ 106.2 106.1 106.3 106 106.4 f [MHz]



 $\langle \xi \rangle = -0.987$ 



# **T**<sub>1e</sub> measurements



Frequency shift in Hz  $\Delta f = \frac{\mu_0}{6\pi} \langle \xi \rangle \gamma_I \gamma_S S \hbar n_S \cdot \left(1 - \frac{\tau_e}{T_{1e}}\right) \tanh\left(\frac{\gamma \hbar B}{2kT}\right)$ 

#### Paramagnetic relaxation rate



#### C. Hess | NIM A 694 (2012) 69-77

### Relaxation via direct process

$$\frac{1}{T_1(\mathsf{d})} = \frac{24\pi^3 h}{\varrho \Delta_c^2} \frac{\nu_0^5}{v^5} |V^{(1)}|^2 \operatorname{coth}\left(\frac{h\nu_0}{2kT}\right)$$



#### Messwerte Potenz Fit 10 coth(1.68/T) inv. Relaxationszeit $1/T_{1e}$ [1/s] 9 Fit: $y = 4.9 \cdot x^{1.3}$ 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Bad-Temperatur T [K]

Evolution to lower temperatures?

#### 1/T<sub>1e</sub> versus bath temperature

# **T**<sub>1e</sub> measurements

Rates of electron spin-lattice relaxation, deuteron spin-lattice relaxation and deuteron polarization build-up, as functions of the oxygen content.



#### Temperature dependence





#### C. Hess | NIM A 694 (2012) 69–77

# $T_{\rm 1e}$ via line-broadening

Reduced second moment

$$m_{2}^{lS} = \frac{(\mu_{0}\gamma_{I}\gamma_{S}S\hbar n_{S})^{2}}{9N_{I}} \left[ (1 - P_{S}^{2})\sum_{j,\mu} \left( \frac{3}{4\pi n_{S}} \frac{1 - 3\cos^{2}\theta_{j\mu}}{r_{j\mu}^{3}} \right)^{2} + P_{S}^{2}\sum_{j} (\xi_{j} - \langle \xi \rangle)^{2} \right]$$

Measurement:Model: $m_2 \propto P^2$  $m_2 \propto (1-P^2)$ 

Possible to measure T<sub>1e</sub> from probes with any shape

<sup>6</sup>LiD:  $T_{1e} \cong 1.5$  to 1.8 s



Gerhard Reicherz | PSTP 2013 INTERNATIONAL WORKSHOP | Charlottesville | 09. – 13. September 2013

RUHR-UNIVERSITÄT BOCHUM

# The Trityl Radicals — Important progress for deuterated RUB materials







Finland D36 (AH110355 deutero acid form) used for butanol-D10

Deuteron : up to 79% at 150mK/2.5T Ox063 (AH100136 sodium salt) used for propandiol-D8

Deuteron: up to 81% at 150mK/2.5T Ox063Me (AH 111 501 sodium salt) used for pyruvic acid <sup>13</sup>C: up to 74% at 900mK/5.0T

#### W. Meyer, et al., NIM A 631 (2011) 1-5

Hom.



## Important parameter: ESR line width and shape

Zeeman Energy of a free electron

$$E_{Z} = -g_{e}\mu_{B}\vec{S}\cdot\vec{B}$$

Contributions to the Electron Zeeman line width

$$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{ hom}} + \underbrace{E_D}_{hom}$$

Inhom.  $\longrightarrow$  hyperfine interaction  $\longrightarrow$  magnetic nuclei  $\longrightarrow$  indep. of B<sub>0</sub>

Inhom.  $\longrightarrow$  g-factor anisotropy  $\longrightarrow$  crystal field  $\longrightarrow$  dep. of B<sub>0</sub>

 $\Delta E_{tot}$ 

- Try to minimize the energy spread
  - Find a suitable doping method
  - $\rightarrow \Delta E_{HFS} \sim \Delta E_D$  Try radiation doping if only low μ nuclei present

### **Bochum measurement**

| D-Butanol                     | EDBA                          | $5.98\pm0.03$ | $12.30\pm0.20$ | 26 |
|-------------------------------|-------------------------------|---------------|----------------|----|
| D-Butanol                     | TEMPO                         | $3.61\pm0.13$ | $5.25\pm0.15$  | 34 |
| D-Butanol                     | Porphyrexide                  | $4.01\pm0.15$ | $5.20\pm0.23$  | 32 |
| <sup>14</sup> ND <sub>3</sub> | <sup>14</sup> ND <sub>2</sub> | $\approx 23$  | $4.80\pm0.20$  | 44 |
| <sup>15</sup> ND <sub>3</sub> | <sup>15</sup> ND <sub>2</sub> | $\approx 23$  | $3.95\pm0.15$  | -  |
| D-Butanol                     | Hydroxyalkyl                  | $1.25\pm0.04$ | $3.10\pm0.20$  | 55 |
| <sup>6</sup> LiD              | F-center                      | 0.0           | $1.80\pm0.01$  | 57 |
| D-Butanol                     | Finland D36                   | $0.50\pm0.01$ | $1.28\pm0.03$  | 79 |
| D-Propandiol                  | Finland H36                   | $0.47\pm0.01$ | $0.97\pm0.04$  | -  |
| D-Propandiol                  | OX063                         | $0.28\pm0.01$ | $0.86\pm0.03$  | 81 |

J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418.

# **Result:** The smaller the EPR line width, the higher the deuteron polarization value

# **Development of Polymer Targets**

Advantages of polymer targets:

- Samples can be formed to practically any geometry.
- Handling of the samples is relatively safe.





- Samples contain only C and H (D) atoms making the background subtraction more precise.
- The dilution factor e.g. of polypropylene is slightly higher than that of butanol.
- D-Polyethylene CD<sub>2</sub>: Paramagnetic centers by irradiation D.G. Crabb, Nucl. Instr. and Meth. A 526,56 (2004) 35 % at 6.5 T/1K
- D-Polystyrene C<sub>8</sub>D<sub>8</sub>: Paramagnetic centers by chemically doping with TEMPO B. van den Brandt et al., Nucl. Instr. and Meth., A536, 53 (2004) 40 % at 2.5 T/100mK

## **Development of Polymer Targets**

Polyethylene: (CH<sub>2</sub>)<sub>n</sub>



• Can be classified by density: LLDPE, LDPE, HDPE

Polypropylene: (CH<sub>2</sub> - CH - CH<sub>3</sub>)<sub>m</sub>



- Can be classified by molecular weight M<sub>w</sub>PP12, PP250, PP580.
- Initial choice of material was isotactic polypropylene.

# **Doping of materials : irradiation cryostats**





Argon cooled cryostat



Wide temperature range cryostat

- Irradiation of materials with an e-beam creates structural defects for DNP e.g. NH<sub>3</sub>, LiD.
- Regulated cooling is essential as beam is additional heat input.
- Materials can be irradiated in argon at 87 K.
- Materials can be irradiated in helium at an optimized temperature 90 K < T < 270 K. Gerhard Reicherz | PSTP 2013 INTERNATIONAL WORKSHOP | Charlottesville | 09. – 13. September 2013 24

## **Doping of materials: LINAC1**

| pulse period        | <sup>τ</sup> pulse  | 1.2 µs    |
|---------------------|---------------------|-----------|
| maximum current     | I <sub>max</sub>    | 250 mA    |
| electron end energy | E <sub>e</sub>      | 20 MeV    |
| repetition rate     | ν <sub>rep</sub>    | 50 Hz     |
|                     |                     |           |
| mean current        |                     | 15 µА     |
| beam power          | P <sub>beam</sub>   | 300 W     |
| power deposited     | P <sub>sample</sub> | (30-45) W |
|                     |                     |           |

- A "standard" dose of  $10^{17} \frac{e^-}{cm^2}$  creates  $10^{19} \frac{e^-}{g}$  in anorganic materials.
- Typical irradiation times of anorganic materials in the region of hours.
- Organic materials are more susceptable to radiation damage and shorter irradiation times are sufficient.

# **Development of Polymer targets radiation doping**



- Initial calculation was made for the needed dose: Estimated dose of 10<sup>14</sup> e<sup>-</sup>/cm<sup>2</sup> is needed.
- Samples irradiated with 20 MeV e<sup>-</sup> in argon cryostat at LINAC1 at ELSA.
- Initial irradiation of material approx. 10 min : Charge injection of 4.19 mC.
- Radical concentration determined by ESR measurement confirms dose is in correct order of magnitude.

## **Development of Polymer Targets: EPR**





- The number of peaks in the ESR spectrum is given by  $(2n_1l_1 + 1)$   $(2n_2l_2 + 1)...$
- 8 lines in spectrum are consistent with the interaction of 7 equivalent protons.
- Radical concentration of PP samples  $5 \times 10^{19} \text{ e}^{-}/\text{g}$ .
- Samples show slight differences but not significant.

## **Development of Polymer targets: DNP**



- Initial polarization measurements at 1 K gave  $P_{max} \approx 4\%$  and relaxation rates 1 min. Sample relaxation was too fast to build up a higher polarization.
- With subsequent annealing of sample it was possible to reach  $P_{max} \approx 10\%$  and  $\tau_{heated} \approx 1h$ . Very promising result considering that the radical concentration may be too high.

## **Polymer deuterated Polystyrol (~styrene) PS**



 $C_8D_8$  dilution factor 0.143 (D-Butanol : 0.238) Same advantages like the other Polymers





## **Preparation of trityl radical in D-Polystyrene**





### Polarization of Finland D36-doped C<sub>8</sub>D<sub>8</sub>



#### Wang Li | NIMA 729 (2013) 36–40



### Polarization of Finland D36-doped C<sub>8</sub>D<sub>8</sub>



Temperature = 400 mK and magnetic field = 5 T

Wang Li | NIMA 729 (2013) 36–40

## **Bochum NMR box**



# Summary / Outlook

- Bonn polarized target and internal polarization magnet development
- T<sub>1e</sub> measurements of different radicals in different host materials and at various temperatures
- Polymer target preparation
   Polyethylene / Polypropylene
  - C<sub>8</sub>D<sub>8</sub> preparation as target material and performance
- Bochum NMR-Box

- T<sub>1e</sub> for temperatures below 1K
- Further development of Polymer targets
- Bochum NMR box is going to be prepared for "series" production