The Cathode preparation and transport system for the Gatling Gun

Omer Rahman

Collider Accelerator Department, Brookhaven National Lab Department of Physics and Astronomy, Stony Brook University orahman@bnl.gov

September 11, 2013

- Motivation and key objectives
- Cathode preparation chamber-step by step design
- Heat cleaning and Activation
- The Cathode storage and transport system to the Gun
- Conclusion and future plan

The proposed eRHIC project requires an electron source with the following main parameters :

- High Average Current: 50 mA
- High polarization: P > 80%

50 mA from one cathode for one week = 15,300 C State of the art charge lifetime = 1000 C. 50 mA distributed over 20 cathodes = 2.5mA per cathode for one week = 765 C Charge lifetime! Our main objectives are:

- To investigate the status of one cathode i.e. change in QE, lifetime etc., in the vicinity of another operating cathode.
- To funnel multiple bunches to one common axis using a rotating magnetic field.

For Phase 1 of the experiment, we aim to combine two bunches from two bulk GaAs photocathodes.

Figure: The Gatling Gun side view, details at E. Wang's talk

Grand Central and The Tree

• Image courtesy: John Skaritka

GaAs: Estaibled and widely used source of polarized electrons Bulk GaAs: Maximum 50% polarization Superlattice GaAs: More than 80% polarization

Highly senstive to vacuum!

Requires "Activation" before photoemission.

Figure: Front view of the actual tree

Figure: View through the top window

Figure: Lower Cross includes Turbo line and NEG

Figure: Second Cross includes NEG, Filament assembly, window and Ion pump

Figure: Third Cross includes Anode, Cs Source, Window, Oxygen valve and Gauge

So all together

Pressure

Figure: Sample Pressure Vs Time graph for the tree

Heat cleaning of the sample

Conventional heat cleaning using a readily available Tungsten filament from a 250W light bulb.... that costs \$1.27.

However, the glass has to be machined off very carefully.

Heat cleaning of the sample

Figure: Schematic diagram of heat cleaning

- Set up the necessary instrumentation i.e. laser, electrometer, battery etc.
- Evaporate Cs from by flowing current through the source.
- After 350 Seconds, the first real signal is seen.
- After 500 seconds, Cs peak and current starts to fall
- Open Oxygen valve as current is falling, it starts to rise again
- Adjust leak valve to obtain maximum rate of increase
- Close leak valve and turn off Cs as current saturates

Typical Activation Curve

The Cathode Storage AKA Grand Central

Figure: Actual Grand Central on the left, cross sectional view on the right

Transport of cathode from Grand Central to Tree 1

Figure: Cathodes are loaded in the load lock chamber which will be baked before the valve is open to Grand Central

Transport of cathode from Grand Central to Tree 2

Figure: Once the load-lock chamber is in XHV, valve is opened and Cathodes are inside Grand Central. Using of a fork lift to bring the cathodes up to the tree

Transport of activated cathode from Grand Central to the Gun Shroud 1

Figure: Activated cathodes are put on the train using the fork lift which is moved to the Gun Shroud

Side view of the Grand Central with the manipulators

Figure: Side view of the Grand Central with the two manipulators to transport the Cathodes

Transport of activated cathodes from Grand Central to Gun Shroud 2

Hook to attach the cathodes to the magazine

• Cathode chamber was assembled

• XHV achieved on a consistent basis

• Bulk GaAs activated with 8% QE

• Grand Central and Cathode transport systems are being built and are scheduled to be tested by the end of this year • Optimize the design of the chamber

• Combine two beams to test funelling using bulk GaAs for low current in early 2014

• If successful, eventually use Superlattice GaAs to obtain highly polarized beam

BNL Gatling Gun Group: Ilan Ben-Zvi, David Gassner, Alexander Pikin, Triveni Rao, Eric Riehn, Brian Sheehy, John Skaritka, Erdong Wang and Qiong Wu.

Thank you For you attention!

Side view of the Gun showing the transport line

