

Polarimetry for the polarized deuterium target at ANKE/COSY

Boxing Gou for the ANKE-Collaboration

PSTP2013

September 09-13, 2013

Motivation - Investigate np system at higher energies

Deuteron is used as source for quasi free polarized neutron for np program at ANKE

With deuteron beam, experiments have been done at COSY up to T_n =1.135GeV

With deuteron target, study can be extended up to $T_n = 2.8 \text{GeV}$

Polarized Internal Gas Target at ANKE

PIT main components:

- Atomic Beam Source (ABS)
 - **H** or **D**
 - H beam intensity (2 HFS)
 - $I = 8.2 \cdot 10^{16} \text{ atoms/s}$
 - Beam size at the IP
 - σ = 2.85 ± 0.42 mm
 - Polarization for deuterium

Q_y ≈ 70% Q_{yy} ≈ 70%

- Lamb-Shift Polarimeter (LSP)
- Target Chamber with Storage Cell (SC) (15x20x370 mm³) to increase the target density

Setup of the experiment

June 2012

Beam: Unpolarized proton beam (T_p = 600MeV)

Target:

Deuterium		
	Qy	Q _{yy}
Vector	+1	+1
	-1	+1
Tensor	0	-2
	0	+1
Unpol.	0	0
N ₂ : background simulation of cell wall		
Empty cell: generate background		
Detectore		

Detectors

- Fd: Forward detector
- Pd: Positive detector
- STT: Silicon Tracking Telescope

Polarimetry reactions

Polarization is measured with nuclear reactions with high cross section and analyzing power which fall in ANKE acceptance

Reaction identification for $p\vec{d} ightarrow pd$

6

Reaction $pd \rightarrow pd$ is selected by missing mass method, there is very low background under the peak.

STT detection system

Ы

$p\vec{d} ightarrow pd$ used as a polarimetry

Polarimetry principle $(p\vec{d} \rightarrow pd)$

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \left(\frac{d\sigma}{d\Omega}\right)_{0}(\theta) \left\{1 + \frac{3}{2}Q_{y}A_{y}(\theta)\cos\phi + \frac{1}{4}Q_{yy}\left[A_{yy}(\theta)(1+\cos 2\phi) + A_{xx}(\theta)(1-\cos 2\phi)\right]\right\}$$

$$\mathcal{A}_{\mathcal{V}} \qquad \mathcal{A}_{\mathcal{T}}$$

$$CR = \frac{N_L^{\mathrm{p}} \cdot N_R^{\mathrm{0}} - N_R^{\mathrm{p}} \cdot N_L^{\mathrm{0}}}{N_L^{\mathrm{p}} \cdot N_R^{\mathrm{0}} + N_R^{\mathrm{p}} \cdot N_L^{\mathrm{0}}}$$

$$= \frac{\left(\frac{\varepsilon_L^P}{\varepsilon_R^P} \middle/ \frac{\varepsilon_L^0}{\varepsilon_R^O}\right) \cdot (1 - \mathcal{A}_{\mathcal{V}} + \mathcal{A}_{\mathcal{T}}) - (1 + \mathcal{A}_{\mathcal{V}} + \mathcal{A}_{\mathcal{T}})}{\left(\frac{\varepsilon_L^P}{\varepsilon_R^P} \middle/ \frac{\varepsilon_L^0}{\varepsilon_R^O}\right) \cdot (1 - \mathcal{A}_{\mathcal{V}} + \mathcal{A}_{\mathcal{T}}) - (1 + \mathcal{A}_{\mathcal{V}} + \mathcal{A}_{\mathcal{T}})}$$

If the ratio of the left and right detector efficiency $\frac{\varepsilon_L}{\varepsilon_R}$ does not change, Qy and Qyy can be determined by fitting the CR obtained from the measurement.

$$=\frac{-\frac{3}{2}\cdot Q_{y}\cdot A_{y}(\theta)}{1+\frac{1}{4}\cdot Q_{yy}\cdot \left[A_{yy}(\theta)\cdot (1+\cos 2\phi)+A_{xx}(\theta)\cdot (1-\cos 2\phi)\right]}$$

$$\approx \frac{-\frac{3}{2} \cdot Q_y \cdot A_y(\theta)}{1 + \frac{1}{2} \cdot Q_{yy} \cdot A_{yy}(\theta)}$$

$$\phi
ightarrow 0^{^\circ}$$
, $180^{^\circ}$

Check consistency of $\frac{\varepsilon_L}{\varepsilon_R}$

Result of polarization measurement $(p\overline{d} \rightarrow pd)$

1st State (1, 1)

Measured polarization: $Q_y = 0.719 + /-0.005$ $Q_{yy} = 0.951 + /-0.054$ 2nd State (-1, 1)

Measured polarization: $Q_y = 0.716 + /-0.007$ $Q_{yy} = 0.738 + /-0.068$

Result of polarization measurement $(pd \rightarrow pd)$

3rd State (0, -2)

4th Sta

Measured polarization: Qy =-0.101+/-0.003

Measured polarization: Qy =-0.014+/-0.003

Tensor polarization Q_{vv} cannot be determined due to reduced signal caused by small value of $Q_v \otimes$

Result of polarization measurement $(p\vec{d} \rightarrow pd)$ $\bigvee JULICH$

If vector polarization Q_y is closed to 0 luminosity ratio R_{lu} and tensor polarization Q_y can be determined by fitting

 $\frac{N^{p}(\theta, \phi)}{N^{0}(\theta)} = R_{Lu} \left[1 + \frac{1}{4} Q_{yy} A_{yy}(\theta) (1 + \langle \cos 2\phi \rangle) \right]$

Identification of $p\overrightarrow{d} \rightarrow \{pp\}n$ reaction.

Preliminary result of A_{yy} measurment for $p\vec{d} \rightarrow \{pp\}n$

CE reaction is not sensitive to deuteron vector polarization if {pp} is in ${}^{1}S_{0}$ (E_{pp} < 3MeV)

$$\frac{N^{p}(\theta, q)}{N^{0}(q)} = R_{Lu} \Big[1 + \frac{1}{4} Q_{yy} A_{yy}(q) (1 + \cos 2\phi) \Big]$$

ÜLICH

Summary and Outlook

- > Target commissioning experiment was successful.
- > High performance of the target was achieved.
- Preliminary measurements of CE analysis powers are in good agreement with the theory.
- Production experiment was approved by COSY-PAC.
- Good physics results are expected.

Thank you