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Mott Location

Located in the injector.

Measures transverse polarization
close to the source.

Along with spin rotators, sets
spin direction for experiments.
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Mott Scattering Asymmetry

The eA cross section can be written

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′

|k×k′| . If P is horizontal, we see an up-down asymmetry,

AUD =
σU − σD

σU + σD
= S(θ)P.

In actuality we use the cross-ratio method:

AUD =
1− r

1 + r
with r =

√√√√N↑UN
↓
D

N↓UN
↑
D

.

This leaves us insensitive to false asymmetries at all orders from detector
solid angle and efficiency, beam current, and target thickness and at first
order from polarization differences and scattering angle.
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Mott Layout

Typical run parameters:

θsc 172.6°± 0.45°

dΩ 0.21 msr

Ibeam 1.0 µA

Beam Energy 5.0 MeV

Event Rate 1 kHz

Spin Flip Rate 30 Hz

Our target inventory includes Au,
Ag, and Cu foils. Mirror collects
OTR light for viewer.
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Polarimeter Optimization
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Figure of Merit, ε(θ) = I (θ)S(θ)2, is inversely related to δP.

Designed to run on 1µm Au at 5 MeV.

Can measure polarization to ≈ 1 % statistical uncertainty in 5
minutes.
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Detectors

≈ 3% Energy resolution.

Coincidence trigger on E+∆E
detectors (removes γs)
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Data Aquisition

FADC channels for E and ∆E detectors records event pulse height at
sample rate of 250 MHz.

No dead-time issues with < 5 kHz means higher currents possible.

Handles delayed helicity reporting.

TDCs provide time-of-flight with 35 ps resolution.

BCM cavity measures Ibeam > 5 nA.
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Multiple Scattering and Effective Sherman Function

A(θ, d) = PSeff (θ, d)

=
PS(θ)

1 + α(θ)d

Tests in 2000 reported a 1.1 % systematic error. Sherman function
uncertainties are the largest single issue.

Since then several changes have been made and the most recent
results are slightly inconsistent.
Two-fold path for improving measurements:

1 GEANT4 modeling and theoretical inputs for better systematics.
2 Reducing backgrounds through hardware updates.
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Detector Spectrum
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Entries  413639
Mean     3797
RMS      1408

 / ndf 2χ   6582 / 657
p0        33.5±  2494 
p1        0.0000045± -0.0009388 
Constant  4.8± 804.6 
Mean      0.8±  5349 
Sigma     0.6±   140 

Clear “tails” (low energy
shoulders on elastic peak) of
unknown cause in the spectrum.

Propose to use GEANT4
simulation for two tasks:

1 Determine the cause of the
“tails” by accurately
modelling detector geometry
and response.

2 Provide insight into A(d) and
S(d) by determining effects of
target thickness directly.
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Asymmetry Vs. Energy

“Tail” carries almost full strength of the physics signal.

Possible that these are good events loosing energy after target and
not being counted.
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GEANT4 Modelled Apparatus

Fires beam from the target to
the detectors.

Contains realistic handling of
optical photons generated by
scintillation and cerenkov
processes.
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GEANT4 Simulated Spectra
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Blue: “Vacuum” (i.e. beamline
vacuum only between the
primary vertex and the E
detector). Monoenergetic beam
of 5 MeV in all cases.

Red: Added ∆E detector.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: ∆E detector + Air.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: ∆E detector, Air + Al
nose and Pb cap.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: ∆E detector, Air, Al nose
and Pb cap + 8 mil Al window
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: All components in place.
Illuminating entire acceptance.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: All components in place.
Illuminating entire acceptance.
Passes through 5 µm Au foil.
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GEANT4 Comparison
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Blue: Vacuum

Red: Passes through 5 µm Au
foil.

Black: Actual 1 µm Au data.

Conclusions about “tails”:
1 γ’s in the detector are a part.
2 Radiative losses in window

and scraping on collimator
contribute.

3 More work is needed.
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Background Source Beam Dump
1.0” thick 8” diameter Al plate in small lead hut.
Large amount (% varies with d and E ) of backscatter from dump
makes it into the detectors.
Can’t separate out using TDC cuts in typical running conditions.
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ToF Selection

Total rate from dump
comparable to or greater than
rate from target in thinner foils.

Effects “tails” and lower elastic
peak.

Using new DAQ, can select for
only in-time events with low rep
rate.
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Normal Operation Issues

Dump contributes as much as 8% of signal under elastic peak (2 σ)
on 1 µm Au.

When we run at high rep rate, can no longer remove background.

Proposed Solution: switch to a low Z material in the beam dump.
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Backscatter Solution: BeCu Dump-Plate

Tabata predicts a factor of ≈ 10
reduction.
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Using 0.25” Be backed by 0.75” Cu
(red) we see a reduction by a factor
of 4 over Al.
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Future Plans

1 Use input from theorists to implement Mott physics with smallest
uncertainties possible.

2 Transition from modelling detector response to modelling whole
polarimeter → numerically predict A(d).

3 Put new hardware (beam dump, target ladder ...) in place.

4 Ready to take beam whenever it comes back.
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The End
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Thermal model of Mott Dump

• No contact of Be disk back to Cu 
disk front

• Contact on Be disk side only
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Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, E = Ze
r3 r. Magnetic field

induced in electron’s frame, B = − 1
c v × E. Therefore

B =
Ze

cr3
r × v =

Ze

mcr3
L

Magnetic field couples to the electron’s spin Vso = −µs · B. Scattering
potential :

V (r ,L,S) = VC (r) + Vso(r ,L,S) =
Ze

r
+

Ze2

2m2c2r3
L · S.
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Detailed Sherman Function

The single scattering cross-section for a point like nucleus is

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′

|k×k′| . The spin-averaged cross section is

I (θ) =

(
mc

p

)2
[(

Ze2

mcβ

)2 (
1− β2

) |f (θ)|2

sin2(θ/2)
+
|g(θ)|2

cos2(θ/2)

]

and S(θ) is the Sherman Function,

S(θ) =
2

I (θ)

(
mc

p

)2( Ze2

mcβ

) √
1− β2

sin(θ/2)
[f (θ)g∗(θ) + f ∗(θ)g(θ)]
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