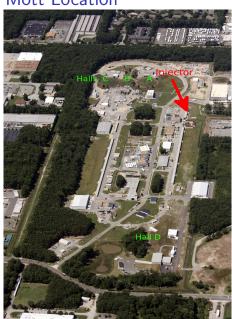
Precision test of Jefferson Lab Mott Polarimeter at 3-8 MeV

Joe Grames¹, Martin McHugh², Allena Opper², Matt Poelker¹, Charlie Sinclair³, Riad Suleiman¹

¹Jefferson Lab, ²The George Washington University, ³ Cornell University


Polarized Sources, Targets, and Polarimetry 2013

Outline

- Mott Overview & Motivation
 - What is the MeV Mott?
 - Motivation for New Tests
- Understanding Elastic Signal
 - Elastic Spectrum Tails
 - GEANT4 Modeling
- Minimizing Backgrounds
 - Backscatter
 - Reducing Background events
- Future Work

Mott Location

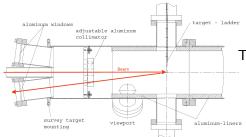
- Located in the injector.
- Measures transverse polarization close to the source.
- Along with spin rotators, sets spin direction for experiments.

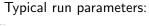
Mott Scattering Asymmetry

The eA cross section can be written

$$\sigma(\theta) = I(\theta) \left[1 + S(\theta) \mathbf{P} \cdot \mathbf{n} \right]$$

with $\mathbf{n} = \frac{\mathbf{k} \times \mathbf{k'}}{|\mathbf{k} \times \mathbf{k'}|}$. If \mathbf{P} is horizontal, we see an up-down asymmetry,

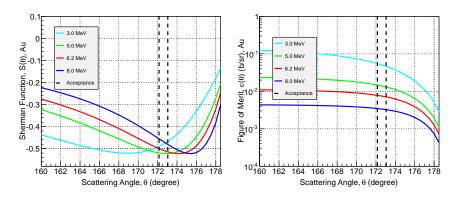

$$A_{UD} = \frac{\sigma_U - \sigma_D}{\sigma_U + \sigma_D} = S(\theta)P.$$


In actuality we use the cross-ratio method:

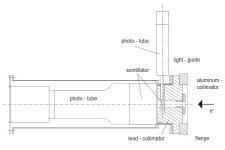
$$A_{UD} = \frac{1-r}{1+r} \qquad \text{with} \qquad r = \sqrt{\frac{N_U^\uparrow N_D^\downarrow}{N_U^\downarrow N_D^\uparrow}}.$$

This leaves us insensitive to false asymmetries at **all orders** from detector solid angle and efficiency, beam current, and target thickness and at **first order** from polarization differences and scattering angle.

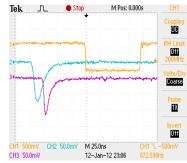
Mott Layout



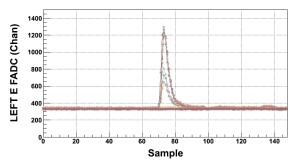
$ heta_{ extsf{sc}}$	172.6°± 0.45°
$d\Omega$	0.21 msr
I_{beam}	1.0 μ A
Beam Energy	5.0 MeV
Event Rate	1 kHz
Spin Flip Rate	30 Hz


Our target inventory includes Au, Ag, and Cu foils. Mirror collects OTR light for viewer.

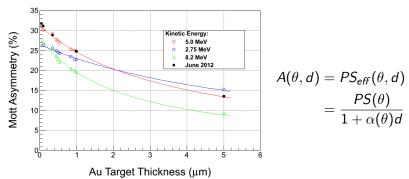
Polarimeter Optimization


- Figure of Merit, $\epsilon(\theta) = I(\theta)S(\theta)^2$, is inversely related to δP .
- Designed to run on $1\mu m$ Au at 5 MeV.
- \bullet Can measure polarization to ≈ 1 % statistical uncertainty in 5 minutes.

Detectors



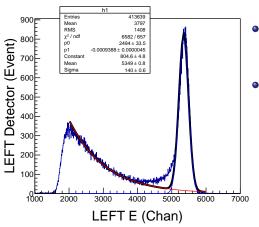
- $\bullet \approx 3\%$ Energy resolution.
- Coincidence trigger on E+ Δ E detectors (removes γ s)



Data Aquisition

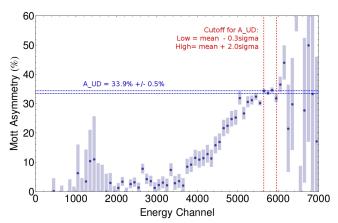
- \bullet FADC channels for E and Δ E detectors records event pulse height at sample rate of 250 MHz.
- \bullet No dead-time issues with < 5 kHz means higher currents possible.
- Handles delayed helicity reporting.
- TDCs provide time-of-flight with 35 ps resolution.
- BCM cavity measures $I_{beam} > 5$ nA.

Multiple Scattering and Effective Sherman Function



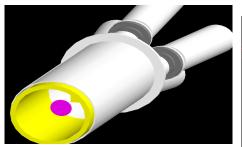
- Tests in 2000 reported a 1.1 % systematic error. Sherman function uncertainties are the largest single issue.
- Since then several changes have been made and the most recent results are slightly inconsistent.
- Two-fold path for improving measurements:
 - GEANT4 modeling and theoretical inputs for better systematics.

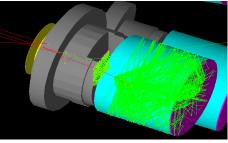
Reducing backgrounds through hardware updates.

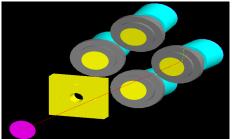

Martin McHugh (GWU) PSTP 13 PSTP 13 9 / 28

Detector Spectrum

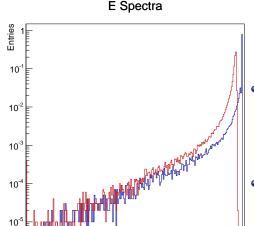
- Clear "tails" (low energy shoulders on elastic peak) of unknown cause in the spectrum.
- Propose to use GEANT4 simulation for two tasks:
 - Determine the cause of the "tails" by accurately modelling detector geometry and response.
 - Provide insight into A(d) and S(d) by determining effects of target thickness directly.

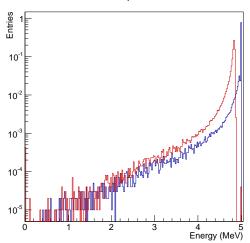

Asymmetry Vs. Energy



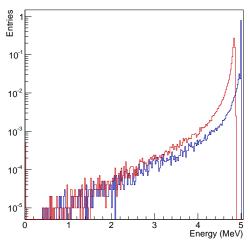

- "Tail" carries almost full strength of the physics signal.
- Possible that these are good events loosing energy after target and not being counted.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

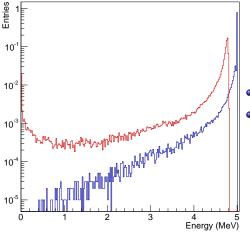

GEANT4 Modelled Apparatus

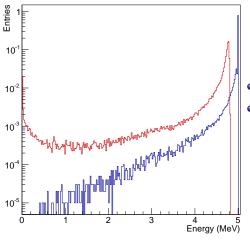

- Fires beam from the target to the detectors.
- Contains realistic handling of optical photons generated by scintillation and cerenkov processes.

- Blue: "Vacuum" (i.e. beamline vacuum only between the primary vertex and the E detector). Monoenergetic beam of 5 MeV in all cases.
- Red: Added ΔE detector.

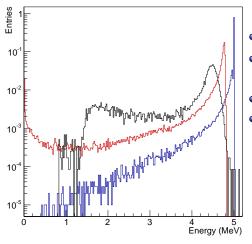

Energy (MeV)


- Blue: Vacuum
- Red: ΔE detector + Air.


- Blue: Vacuum
- Red: ΔE detector, Air + Al nose and Pb cap.

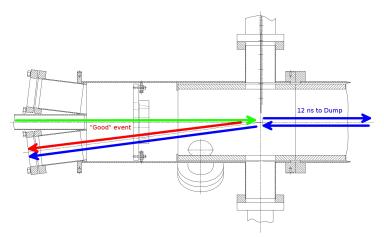

- Blue: Vacuum
- Red: ΔE detector, Air, Al nose and Pb cap + 8 mil Al window

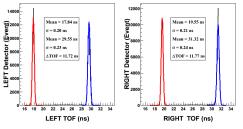
- Blue: Vacuum
- Red: All components in place.
 Illuminating entire acceptance.

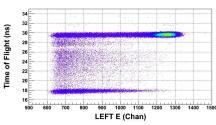


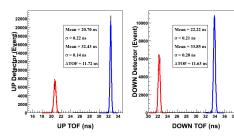
- Blue: Vacuum
- Red: All components in place. Illuminating entire acceptance. Passes through 5 μ m Au foil.

GEANT4 Comparison

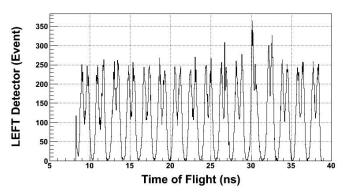



- Blue: Vacuum
- Red: Passes through 5 μ m Au foil.
- ullet Black: Actual 1 μ m Au data.
- Conclusions about "tails":
 - **1** γ 's in the detector are a part.
 - Radiative losses in window and scraping on collimator contribute.
 - More work is needed.


Background Source Beam Dump


- 1.0" thick 8" diameter Al plate in small lead hut.
- Large amount (% varies with d and E) of backscatter from dump makes it into the detectors.
- Can't separate out using TDC cuts in typical running conditions.

ToF Selection



- Total rate from dump comparable to or greater than rate from target in thinner foils.
- Effects "tails" and lower elastic peak.
- Using new DAQ, can select for only in-time events with low rep rate.

Normal Operation Issues

- Dump contributes as much as 8% of signal under elastic peak (2 σ) on 1 μ m Au.
- When we run at high rep rate, can no longer remove background.
- **Proposed Solution**: switch to a low Z material in the beam dump.

Backscatter Solution: BeCu Dump-Plate

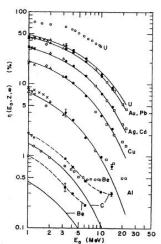
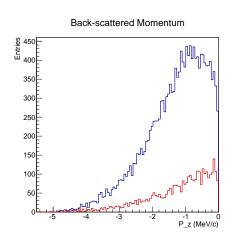
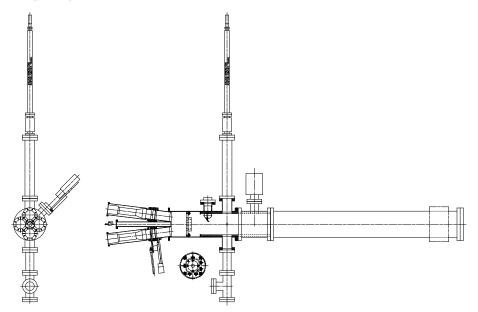
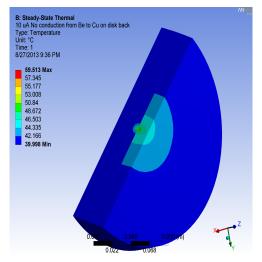



Fig. 8. Dependence of total backscattering coefficient $\eta(E_0, Z, \infty)$ for semi-infinite targets upon incident energy E_0 .

Tabata predicts a factor of ≈ 10 reduction.



Using 0.25" Be backed by 0.75" Cu (red) we see a reduction by a factor of 4 over Al.


Future Plans

- Use input from theorists to implement Mott physics with smallest uncertainties possible.
- ② Transition from modelling detector response to modelling whole polarimeter \rightarrow numerically predict A(d).
- Put new hardware (beam dump, target ladder ...) in place.
- Ready to take beam whenever it comes back.

The End

Thermal model of Mott Dump

•
$$\frac{dE}{dx} = 1.6 \, MeV \frac{cm^2}{g}$$

- $I_{beam} = 10 \mu A$
- · No contact of Be disk back to Cu disk front
- · Contact on Be disk side only

Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, $\mathbf{E} = \frac{Ze}{r^3}\mathbf{r}$. Magnetic field induced in electron's frame, $\mathbf{B} = -\frac{1}{c}\mathbf{v} \times \mathbf{E}$. Therefore

$$\mathbf{B} = \frac{Ze}{cr^3}\mathbf{r} \times \mathbf{v} = \frac{Ze}{mcr^3}\mathbf{L}$$

Magnetic field couples to the electron's spin $V_{so} = -\mu_s \cdot \mathbf{B}$. Scattering potential :

$$V(r, \mathbf{L}, \mathbf{S}) = V_C(r) + V_{so}(r, \mathbf{L}, \mathbf{S}) = \frac{Ze}{r} + \frac{Ze^2}{2m^2c^2r^3}\mathbf{L} \cdot \mathbf{S}.$$

Detailed Sherman Function

The single scattering cross-section for a point like nucleus is

$$\sigma(\theta) = I(\theta) \left[1 + S(\theta) \mathbf{P} \cdot \mathbf{n} \right]$$

with $\mathbf{n} = \frac{\mathbf{k} \times \mathbf{k'}}{|\mathbf{k} \times \mathbf{k'}|}$. The spin-averaged cross section is

$$I(\theta) = \left(\frac{mc}{p}\right)^2 \left[\left(\frac{Ze^2}{mc\beta}\right)^2 \left(1 - \beta^2\right) \frac{|f(\theta)|^2}{\sin^2(\theta/2)} + \frac{|g(\theta)|^2}{\cos^2(\theta/2)} \right]$$

and $S(\theta)$ is the Sherman Function,

$$S(\theta) = \frac{2}{I(\theta)} \left(\frac{mc}{p}\right)^2 \left(\frac{Ze^2}{mc\beta}\right) \frac{\sqrt{1-\beta^2}}{\sin(\theta/2)} \left[f(\theta)g^*(\theta) + f^*(\theta)g(\theta)\right]$$

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ